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Centre National de Recherche en Génomique Humaine
(CNRGH) :

Within the CEA, the National Center for Human Genomics Research (CNRGH), located in the
Evry-Courcouronnes Genopole, is a research center dedicated to the study of the human
genome. It is part of the Francois Jacob Institute of Biology (IBFJ), which belongs to the CEA’s
Fundamental Research Division (DRF).

The center provides the French and European scientific communities with the capacity to
produce, store, and analyze the biological data required to carry out projects in the field of
medical genomics, including research on cancer, rare diseases, and autism. It is the largest

sequencing platform in France and one of the five largest in Europe.

The Mathematics and Statistics (MS) team plays a pivotal role at the National Center
for Human Genomics Research. Its scope of action covers three main functions. First,
the MS team is responsible for quality control of data generated by the genotyping
platform. Second, the MS team acts as a reference point for the evaluation and
validation of statistical analysis plans for both internal and external collaborative
projects involving human genetics studies that use the CNRGH’s genotyping and
sequencing platforms. Finally, the MS team initiates methodological research
projects on original topics of interest to the genetics community. In particular, it has
developed expertise in statistical methods for studying genetic associations,
including rare variants, gene-environment interactions, gene networks (pathways),
and multi-omics integration.

Address :

2 rue Gaston Crémieux
91000 Evry-Courcouronnes



France

Détail de I'offre (poste, mission, profil) :

Context. In the context of cancer, accumulations of aberrations observed at multiple molecular levels are
the source of the many differences observed between somatic tumor and normal cells1. Abnormalities on
DNA may include an increased number of mutations, differentially methylated sites (epigenetic markers),
or copy number variations (different numbers of copies of a chromosome segment in a cell). Such
modifications have an impact on gene expression, which in turn affect proteins. Studying these molecular
data (namely omics) separately is often not enough to understand the undergoing dysregulation. This led
to the establishment of multi-omics studies with the hope that looking jointly at all the molecular layers
would unravel the big picture. From a statistical point of view, this would result in an increase of power.
Indeed, combining multiple small effects, across several omic modalities, commonly explaining the same
phenomenon would increase the signal-to-noise ratio. However, to achieve this purpose, the high
dimensionality of such data (more than 20.000 coding genes) has to be handled to avoid estimating
spurious associations. Therefore, a tremendous number of multi-omics analysis methods have been
developed?:3.

Among the tasks addressed with multi-omics data, survival analysis consists in estimating the
duration between a patient’s initial diagnosis and their death. Such analysis can identify groups
of patients with differential prognosis and distinguished by a molecular (omic) signature.
Clinicians can further investigate such signatures for new treatments or to better adapt therapies
according to the molecular specificities of a given cancer. This is one way of performing
precision medicine.

Despite the promise of multi-omics data, their benefit in the field of cancer survival analysis
remain limited. In an insightful study3, 12 survival analysis methods were compared on 18
cancer data-sets analyzed separately. The aggregated results across all cancers showed that
only two methods using both clinical and molecular data performed better (not statistically) than
a reference model using only clinical data. Adding Deep Learning methods in a follow-up study4
did not change the conclusions. In an ongoing work®, we added joint Dimension Reduction (jDR)
methods to the comparison. These methods estimate a reduced space representing well the
commonalities between omic Iayersz. We made the hypothesis that estimating such joint
reduced space, prior to survival analysis, would improve the prediction results by better dealing
with the high dimensionality of the data. Preliminary results identified two JDR methods, using
both clinical and omics data, statistically outperforming the reference model, using clinical data
only, after aggregating the results across all cancers. Further improvement in the performance of
these methodologies may be expected.

However, we are still far from identifying robust candidate multi-omics biomarkers to be
further investigated by clinical trials. This could mean that the dimensionality of the data is
simply too high to construct good prediction models. We identified two major ways to better
handle this curse of dimensionality. First, all studies mentioned above deal with complete



data, i.e. if a subject has at least one missing omic modality, this subject is not considered in
the analysis. This strategy is known to be suboptimal and can further exacerbate the curse
of dimensionality®. Then, this issue can be also alleviated by inserting information to the
targeted data-set either by (i) making use of prior knowledge or (ii) through Transfer
Learning (TL). The limitation with (i) is that the model must integrate a reliable/robust prior
knowledge, which is not always possible especially in the case of rare diseases, which are
typically poorly characterized and supported by very limited sample sizes. Transfer
Learning, on the other hand, aims at extracting this prior knowledge from a Source data-set
and transfer it to the desired data-set, called the Target, to learn faster (i.e. with fewer
observations) a new task out of it. A common practice is to train a model on the Source and
then fine-tune it on the Target. However, in order for this transfer to work, the datasets must
be related.

General Goal. The objective of this internship is to study models able to both deal with missing
data and perform Transfer Learning to tackle the curse of dimensionality in cancer survival multi-
omics studies. These methodologies will be especially evaluated in the context of rare cancers
(less than 6-15 new cases per 100.000 people per year; though 22-27% of cancer diagnosed
and 25% of cancer mortality7) that could benefit the most from these approaches.

Tasks. To achieve this goal, the first task of this internship will be to perform a benchmark study
on the biggest public multi-omic cancer data-set, The Cancer Genome Atlas (TCGA), gathering
33 cancer types for more than 11.000 patients across 8 modalities. Following previous TL
studies working with complete data8'9, all types of cancer but one will compose the Source data-
set and the remaining one will act as the Target rare cancer. This setting is built upon the fact
that preliminary studies have shown that information are shared across cancers through multiple
omics datal9:11, This would allow to learn a general “cancer knowledge” transferable to a
targeted cancer. This setting will be repeated for several Target cancer to draw robust
conclusions3. Furthermore, different missing data situations will be manually generated from the
Source, the Target or both. Despite that JDR methods have already proven to outperform the
others when a Target cancer is analyzed alone5, in this study, the Source data-set will be
composed of enough observations so that classical Machine Learning and Deep Learning
methods are expected to be comparablelz. Hence, both jDR13 and Variational Auto-Encoders
14'15, their equivalent within a Deep-Learning framework, will be evaluated in this benchmark.

In a second time, such analysis will be applied on an adult rare cancer multi-omic cohort
provided by Dr. Agusti ALENTORN. This cohort gathers 147 clinical, 123 transcriptomic, 115
Whole Exome Sequencing and only 64 methylation profiling data on Primary Central Nervous

System Lymphoma16.


https://www.cancer.gov/tcga

Send CV and motivation letter to Mary SAVINO and Arnaud GLOAGUEN

Mary SAVINO : msavino@cnrgh.fr
Arnaud GLOAGUEN : agloague@cng.fr

Requirement :

M2 or last year of engineer school with specialty/knowledge in Computer Science / Statistics / Machine
Learning / Deep Learning / BioStatistics.

Working knowledge in programming (R / Python, ...).

Previous experience with applications to genomics will be a plus.
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