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Learning

w* = argminL(f(X,w), )

X = Samples
Y = Annotations
w = Model parameters

[ — Loss function



Model Selection
0* = arg miﬂﬁ(f@(xvala w*)a yval)

w

w* = argminL(fy(X,w),))
X = Samples 6 — Model params
Y = Annotations
w = Model parameters

[ — Loss function



Regularization
w* = arg HliIlL(f(Xvah w*)7 yval)

oy

w* = argminL(f(X,w),Y) + R(w)
X = Samples w = Reg. hyper
Y = Annotations
w = Model parameters

[, — Loss function



Latent Variable Estimation

V= arg;ninﬁ(f (Xoal, W* )y Voal)
w* = argminL(f(X,w),))

X = Samples

) = Annotations

w = Model parameters
[ — Loss function



Bilevel Optimization

follower = 6" = argminLyq (w*, Xoar; Vo)
leader = w* = a,rge minl(w, X, Y, 0)
X = Samples N
Y = Annotations
w = Model parameters

L — Loss function

6 — any parameter
or latent var.



Bilevel Optimization

. Fix 6*
@ 0* = arg mmﬁml (’w*7 Xvala yfual)
6
1 w* = argminl(w, X, )Y, 0) @
Fix w* W

- Optimal solution:
- Double iteration — Very expensive
- Approximations:
- Trade-off between quality of solution and speed



Bilevel Optimization

- Model Selection:

- Type of convolutions
- Number of layers, neurons, etc..

- Regularization:
- L1, L2 regularization
- Early stopping, Batch size

- Learning with Latent Variables:
- Semi-supervised Learning
- Temporal localization in videos
- Weakly-supervised Object detection



Neural Architecture Search
(NAS) for CNN pooling

Mehraveh Javan, Matthew Toews, Marco Pedersoli, “Balanced Mixture of Models for Optimal CNN pooling”, in AutoML23.



NAS for CNN pooling:

Bilevel Optimization

g = arggminﬁ(fe(xval, w*)a yval)
w* = argminL( fp(X,w),))

w 61

6* = Pooling configuration

oo}

|



NAS for CNN pooling:
Benchmark on CIFARI10

| Architecture
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NAS for CNN pooling:
Challenges

61 87.45 2 91.83
- Non-differentiable — + i
- Weight sharing — = —
Interference between configs. = commm—— =
6 = Pooling configuration —
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NAS for CNN pooling:

Related work

DARTS:
Relaxes pooling into a continuous 5533

pr'oblem SuperNet
Memory hungry—
use always all configurations argmax
- Multiple paths activated —
interference

- Inpractice: it does not work!l! \

Hanxiao Liu, Karen Simonyan, Yiming Yang, “DARTS: Differentiable Architecture Search”, ICLR 2019.

Resolution



NAS for CNN pooling:

Related work

SPOS (single path one shot):
- Samples uniformly a single path during training
- Architecture selection after training by

evaluating SuperNet performance
- Less memory, but still interference between configs
- Uniform sampling avoids biases towards wrong configs
- Works, but far from optimal!

Layers

Resolution
Hanxiao Liu, Karen Simonyan, Yiming Yang, “DARTS: Differentiable Architecture Search”, ICLR 2019.
Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., and Sun, J., “Single path one-shot neural architecture search with uniform sampling”, ECCV 2020.



NAS for CNN pooling:
Our Method

Balanced Mixture of SuperNets

- Sample uniformly on C —
No bias during training
Optimal configuration chosen after

fuangan
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Architecture C

- Multiple Models —
- Each architecture config. C is associated to Model M,
but same marginal probability for each model
- Reduces interference between different configs. 5 g
1 2 3 4
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NAS for CNN pooling:

Balances Mixtures of SuperNets

Models r
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NAS for CNN pooling:

Evaluation CIFAR 10

86
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NAS for CNN pooling:

Evaluation on CIFARI10

NAS Method Architecture Accuracy Training (GPU hours
DARTS + GAEA Fig. 4a 89.12 + 0.1 12
DARTS Fig. 4a 89.23 + 0.08 12
SBE + Unif. Smp. [1,6,3] 90.13 + 0.06 2.5
SPOS [4,2,4] 90.34 + 0.12 1.5
MCTS UCB [4,2,4] 90.34 + 0.12 2.5
SBE [2,3,5] 90.42 + 0.08 2
Default [4,3,3] 90.52 + 0.10 .
MCTS UCB + Unif. Smp. [4,4,2] 90.85 + 0.09 2.5
Balanced Mixtures (Ours) [5,3,2] 91.55 +0.08 6
Best conf. (Bruteforce) [7,1,2] 92.01 +£0.12 98

Balanced Mixtures is the only model that gets close the
the optimal pooling configuration.

19



NAS for CNN pooling:

ImageNet & Food 101

Models | top-1 Arch. top-1 top-3 Best Best Arch. Accuracy

Default [2,2,2,2] 68.32 + 0.24 NA 84.00 = 0.10
M= [1,3,1,3] 62.21 £0.26 65.91 +0.21 84.24 + 0.09
M= 2 [3.1,1,3]  62.56+0.18 68.32 + 0.24 84.34 + 0.18
M=4 [5,1,1,1] 65.88 +0.24 66.12+0.18 84.35+0.14
M=8 [23,21] 64.81+0.11 66.12 +0.23 84.73 + 0.09

- On ImageNet best model is the original pooling
configuration because ResNet is optimized on it!
- On Food 101 more models and more improvement.




Automatic Data
Augmentation

Saypraseuth Mounsaveng, Issam Laradji, Ismail Ben Ayed, David Vazquez, Marco Pedersoli, “Learning data augmentation with 29
online bilevel optimization for image classification”, WACV2021



Automatic DA
Bilevel Optimization

0* = arg mlnﬁ(f( val y W *)7yval
0
w* = argminL(f(Ty(X),w), Y

w

- More challenging than Model : ’
Selection because O does not -
>

appear in the upper- op’nmlsa‘rnon

EEHEV -

T = transformation Ne’rwork

-



Automatic DA

Previous Work

0* = arg minE(f(Xval, ’UJ*), yval)
w* = argemlnﬁ(f(%(x)a ’LU), y)

w
Autoaugment optimizes the bilevel objective by sampling an
augmentation policy 8 and estimating Vo L(f(Xoar, w*), Voar)
with RL.

Very slow: a complete training for each inner iteration!

Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, Quoc V. Le, AutoAugment: Learning Augment%z:(on
Policies from Data,, CVPR 2019.



Automatic DA

Previous Work

0* = arg minE(f(Xval, ’UJ*), yval)
w* = argemlnﬁ(f(%(x)a ’LU), y)

w
Randaugment optimises only the magnitude of the
transformations 0 trying several values
Suboptimal and slow: still a strong baseline

Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, Quoc V. Le, “RandAugment: Practical automated data augment%zg'on
with a reduced search space”, NeurlPS 2020.



Automatic DA
Our approach

0* = arg minL(f(Xval, w*)a yval)
0
w* = arg mmﬁ(f(%(x), ’LU), y)

w

Instead of learning a policy, we learn the parameters O
of a network that generates stochastic augmentations

Before @ was a limited set of configurations/policies — |@|<1000
Now @ are the parameters of the Augmentation Network — |@|>>1000

We need to use gradient! Sampling approaches wouldn't work! ”



Automatic DA

Our approach

Outer loop

classification validation
network loss

1 shared weights

Inner loop

9 0 0,000
noise vector

augmentation | .,4 classification Ji§ training
network - - network loss

training image

. update @ '

augmented image

Uses an

Augmentation
Network with
parameters @

Learns to
generate
transformations
which reduce
validation loss 7



Automatic DA
Approximations

Veﬁ(f( val y W )7yval)

Approximate w* with one iteration of Vwﬁ( (To(X), w), y)

VHE(]C( valy W )yval) VHE(f( valy W — V 220)7)}1)@)

Approximate Vy L with a single unroll of the gradient with
respect ot w.

29



Automatic DA

Optimal
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AuTomgvfic DA

Optimal
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Automatic DA

~ Vgﬁ

Optimal
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Automatic DA

Results
ResNetl8 / CIFAR10 Trans. | Affine Cost
Baseline 88.55 88.55 1
Predefined 05.28 94.59 > 60
Transf. invariant (STN) 02.14 90.31 1.1
Validated magnitude 94.58 93.43 11.5
Our model 95.35 95.16 >3

- Automatic DA is better than a transformation invariant model
- Augmentation Network is better than validated transformations



Automatic DA

Results

Classifier CIFAR10 | CIFAR100

Baseline ResNetl8 88.55 68.99
Predefined ResNetl8 91.18 73.61
Bayesian DA [50] ResNetl8 91.00 72.10
DAN [36] BadGAN 93.00 -

TANDA [42] ResNet56 94 .40 -

AutoAugment [9] ResNet32 95.50 -

Ours ResNetl8 95.42 74.31
Baseline WRN 28-10 04.83 69.90
Predefined WRN 28-10 95.76 81.10
AutoAugment WRN 28-10 97.40 82.90
Fast AA WRN 28-10 97.30 82.70
PBA WRN 28-10 97.40 83.30
RandAugment WRN 28-10 97.30 83.30
Our model WRN 28-10 96.44 81.90

Comparable with more
complex training approaches
On larger models, policy
based methods seems still
better than our Augmenter
based approach
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Learning with
Latent Variables

Masih Aminbeidokhti, Marco Pedersoli, Patrick Cardinal, Eric Granger, “Emotion recognition with spatial attention and
temporal softmax pooling”, ICIAR 2019 best paper award.

Théo Ayral, Marco Pedersoli, Simon Bacon, Eric Granger, “Temporal Stochastic Softmax for 3D CNNs: An Application in
Facial Expression Recognition”, WACV 2021.

Akhil Meethal, Marco Pedersoli, Zhing Zhu, Frangisco P Romero, Eric Granger, “Semi-Weakly Supervised Object
Detection by Sampling Pseudo Ground-Truth Boxes”, I/JCNN 2022.

35



Learning with LV

y* — arg;ninﬁ(f(x’ual) w*)a yval)
w* = argminL(f(X,w),))

w
Simplified into:

y* — a,rgmlnﬁ(f(X, w*)7y)
Y
w* = arg mlnﬁ(f(X, w)? y)

w



Learning with LV

Temporal localization for FER

Y* = argminL(f(X,w*),)) w* = argminL(f(X,w), V)
y _ - N

nappy M
Temporal
- = Localization 5,




Learning with LV

Tempoml |OCG|IZG‘|'IOH for FER
i . B f(z) =Dy f()

_ expf(xt)/T
//\— Yt = S exp f(w;)/T

O 10 20 30 40 50 60 70 80

Softmax pooling: generalization of average and max pooling:
- when T — +inf average pooling
- when T=0  max pooling
But, large models cannot fit the entire video in memory!l! 38



Learning with LV

Temporal localization for FER
Uniform Sampling of average pooling (previous approaches™)
fl@) = 5 Xty fla)  ~ 305 flz), s~U

Uniform Sampling of weighted Temporal Pooling
f@) =S wf(z) ~ % Siavsf(@s), s~U

Importance Sampling of weighted Temporal Pooling (ours)
f@) = wef(m) ~ LS8, flz), s~ M)

* Joao Carreira, Andrew Zisserman, “Quo Vadis, Action Recognition? A New Model and the 40
Kinetics Dataset” CVPR 2017.



Learning with LV

Temporal localization for FER

Uniform Sampling of average pooling
fl@) = % XL flm) ~ % Si f@), s~U
+ Reduced memory and computation
+ Same objective in expectation
- Considering every part of the video in the same way
- Increased variance due to the sum estimation

Function Pooling Sampling

2N

41



Learning with LV

Temporal localization for FER
Uniform Sampling of weighted Temporal Pooling

flz) = Z{Z\; yf(zt) =~ % Zle ysf(zs), s~U

+ Reduced memory and computation

+ Same objective in expectation

+ Can focus on the most important frames with Softmax Pooling
+ Can still estimate w with backprop as using uniform sampling

- High variance due to the uniform sampling
Function Pooling Sampling

N O

42



Learning with LV
Temporal localization for FER

Importance Sampling of weighted Temporal Pooling
f@) =S wf@) =% Xiawf), s~u

Instead of applying a weight y to f
we sample with an importance y
Same objective but lower variancel!

Function Pooling A Sampling
\/‘/\ \/‘/\ )
[ [




Learning with LV

Temporal localization for FER

Importance Sampling of weighted Temporal Pooling
fl@) =Y wf(m) =L+ f@s), s~ M)

+ Reduced memory and computation
+ Same objective in expectation
+ Can focus on the most important frames with Softmax Pooling
+ Reduced variance due to the Multinomial sampling proportional o the frame importance
- Cannot estimate w with backpropagation due to Multinomial sampling
Function Pooling Sampling

2N _\




Learning with LV
Our Approach

Multinomial Sampling proportional to y

flz) =30 vef(m) =LK flzs), s~M(y)
How to estimate y?
For each sample s:  qs = Bqs + (1 — B) f(zs)

Re-normalize: y; — Ze.xfx(st(il')
exp(f(xs))

Thus: Y ~ S, exp(f(x;))

45



Learning with LV
Our Approach

Running estimate of clip scores
(initialized to uniform distribution)

;i"__ Sample temporal clip EE
| t ~a(y) &
MY ¥
LSS % " !
'y N A : :
¥ Compute score %
¥ Y = Fy(x,) ¥
- o
- i
~ i . i1 for each
3D CNN i Train with b
e I Sy~ " i 1 epoch
parameters '\ backprop. A8 clip x, ' |
o ,+ for each

N ' sample 46



Learning with LV

Results

e P PP 7 LB R "Wy g >
g l. ¢ ° o ot of S 507 oflgee® ®e § 8 o PY §o o ,
Uniform  °———— " e — T 1 L N S N DAY $ 4 o .o 2.
15 -
Sampling | £10- i "
T . 0F i m——
£20{ e e % o I l I ' ® '.'.'. ol '
- ' . o e 3¢ . . .gso.o- -4 . '..il'.. Lo
Weighted = —— ' : — "~ oo .. % . it » s #P®°® .o oo
5.0 4 15 A
Sampllngozs/_—-/\_A %’10__’_/—/_‘/_—\———\
0 10 20 30 40 50 60 o 2 5]

video timeline (frames) ! T T T T T v

47



Learning with LV

Results
Inverse REINFORCE Ours Softmax
Temp. Acc.(%) Ep. Acc.(%) Ep.
v=0 45.66 =.21 | 24.6 | 45.66 +=.21 | 24.6
v=0.5 | 46.09 .41 | 23.8 | 46.07 £.27 | 23.6
=l 46.80 =.63 | 22.5 | 47.35 .27 | 20.3
v =10 44.52 +=.18 | 17.5 | 46.65 .40 | 17.2

- With correct temperature faster and better training
than uniform sampling

48



Learning with LV

Results

Method Model Acc. (%)
Luetal., 2018 [31] | 3D VGG-16 39.36
Fan et al., 2016 [11] | C3D 39.69
Vielzeuf et al., C3D-LSTM 43.2

2017 [51] C3D Weighted 42.1

C3D baseline C3D (uniform) 39.95
C3D with Softmax C3D(y=1) 42.78
VGG baseline 3D VGG-16 (unif.) 45.66
VGG with Softmax | 3D VGG-16 (v = 1) 47.35

Better than other models with uniform sampling on

different backbones




Conclusions

- Inlearning, we need not only to fit the data, but also to:
- generalize
- select the model
- learn with missing/noisy data

- We can cast all these problems as bilevel optimization

- Thus, learning is a Bilevel Optimization problem!

50



Looking for collaborations

- Bilevel optimization
- Better theoretical understanding
- New approximations and applications
- Sampling-based learning
- Connections with RL and multi-armed Bandit
- Further exploration / new applications
- Transformer/Large Language Models
- Reduce quadratic constraints
- Work on connection between text and vision
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