Learning is a Bilevel Optimization problem

Workshop ILLS/DATAIA Marco Pedersoli

26/05/2023

LABORATOIRE D'IMAGERIE, DE VISION ET D'INTELLIGENCE ARTFICIELLE

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

rie Université du Québec

My Research

Data Exploration

Efficient Data Efficient Learning

- Associate prof at ÉTS Montréal
- Industrial Research Co-Chair in Building Automation with Deep Learning
- Member of LIVIA & ILLS
- Affective Computing Lab
- Collaboration with several companies:
 - Distech Controls, Ericsson, ServiceNow, Ubisoft, Teledyne Dalsa, MDA, CAE

Learning

$$w^* = \operatorname*{arg\,min}_w \mathcal{L}(f(\mathcal{X},w),\mathcal{Y})$$

- $\mathcal{X} =$ Samples
- $\mathcal{Y}=$ Annotations
- w = Model parameters
- $\mathcal{L} = Loss$ function

Model Selection

- $egin{aligned} & heta^* = rgmin\mathcal{L}(f_{m{ heta}}(\mathcal{X}_{val},w^*),\mathcal{Y}_{val}) \ &w^* = rgmin\mathcal{L}(f_{m{ heta}}(\mathcal{X},w),\mathcal{Y}) \ &w^* & \mathbf{O} \end{aligned}$
- $\mathcal{X}=$ Samples w heta= Model params
- $\mathcal{Y}=$ Annotations
- w = Model parameters
- $\mathcal{L} = Loss$ function

$$\begin{array}{l} \textbf{Regularization} \\ \omega^* = \arg\min_{\omega} \mathcal{L}(f(\mathcal{X}_{val}, w^*), \mathcal{Y}_{val}) \\ w^* = \arg\min_{\omega} \mathcal{L}(f(\mathcal{X}, w), \mathcal{Y}) + \mathcal{R}(\boldsymbol{\omega}) \\ \mathcal{X} = \text{ Samples}^w \qquad \boldsymbol{\omega} = \text{ Reg. hyper} \\ \mathcal{Y} = \text{ Annotations} \end{array}$$

- w = Model parameters
- $\mathcal{L} = \text{Loss function}$

Latent Variable Estimation

w

$$egin{aligned} \mathcal{Y}^* &= rgmin \mathcal{L}(f(\mathcal{X}_{val}, w^*), \mathcal{Y}_{val}) \ \mathcal{Y}^* &= rgmin \mathcal{L}(f(\mathcal{X}, w), \mathcal{Y}) \end{aligned}$$

- $\mathcal{X}=$ Samples
- $\mathcal{Y}=$ Annotations
- w = Model parameters
- $\mathcal{L} = \text{Loss function}$

Bilevel Optimization

- follower $\implies \theta^* = \arg \min \mathcal{L}_{val}(w^*, \mathcal{X}_{val}, \mathcal{Y}_{val})$ leader $\implies w^* = \arg \min \mathcal{L}(w, \mathcal{X}, \mathcal{Y}, \theta)$ W $\mathcal{X} =$ Samples $\theta = any parameter$ $\mathcal{Y}=$ Annotations or latent var. w = Model parameters
 - $\mathcal{L} = Loss$ function

$$\begin{array}{l} \textbf{Bilevel Optimization} \\ \theta^* = \underset{\theta}{\arg\min \mathcal{L}_{val}(w^*, \mathcal{X}_{val}, \mathcal{Y}_{val})} & \overbrace{\\ \mathbf{Fix \ w^*}}^{\mathsf{Fix \ \theta^*}} & w^* = \underset{w}{\arg\min \mathcal{L}(w, \mathcal{X}, \mathcal{Y}, \boldsymbol{\theta})} \end{array}$$

- Optimal solution:
 - Double iteration \rightarrow Very expensive
- Approximations:
 - Trade-off between quality of solution and speed

Bilevel Optimization

- Model Selection:
 - Type of convolutions
 - Number of layers, neurons, etc..
 - Pooling configuration

- Regularization:

- L1, L2 regularization
- Early stopping, Batch size
- Data Augmentation

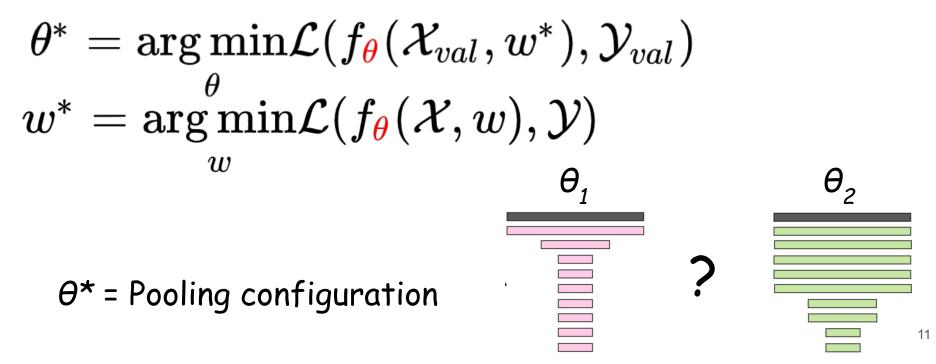
- Learning with Latent Variables:

- Semi-supervised Learning
- Temporal localization in videos
- Weakly-supervised Object detection

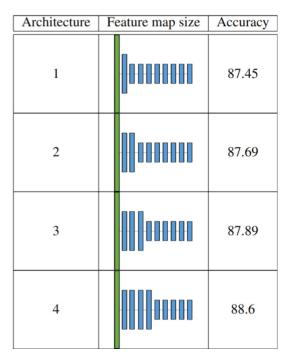
Neural Architecture Search (NAS) for CNN pooling

Mehraveh Javan, Matthew Toews, Marco Pedersoli, "Balanced Mixture of Models for Optimal CNN pooling", in AutoML23.

NAS for CNN pooling: Bilevel Optimization



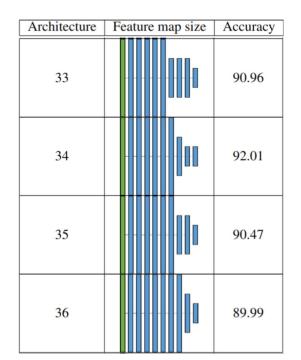
NAS for CNN pooling: Benchmark on CIFAR10



ResNet20

Default: 90.52% Best: 92.01%

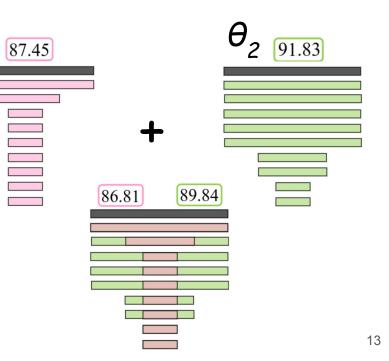
. . .



NAS for CNN pooling: Challenges

- Non-differentiable
- Weight sharing \rightarrow Interference between configs.

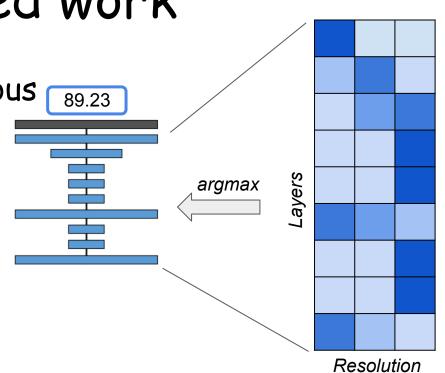
 θ = Pooling configuration



NAS for CNN pooling: Related work

DARTS: Relaxes pooling into a continuous problem: SuperNet

- Memory hungry→ use always all configurations
- Multiple paths activated \rightarrow interference
- In practice: it does not work!!!



NAS for CNN pooling: Related work

SPOS (single path one shot):

- Samples uniformly a single path during training
- Architecture selection after training by evaluating SuperNet performance
 - Less memory, but still interference between configs
 - Uniform sampling avoids biases towards wrong configs
 - Works, but far from optimal!

Hanxiao Liu, Karen Simonyan, Yiming Yang, "DARTS: Differentiable Architecture Search", ICLR 2019.

Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., and Sun, J., "Single path one-shot neural architecture search with uniform sampling", ECCV 2020.

Resolution

ayers

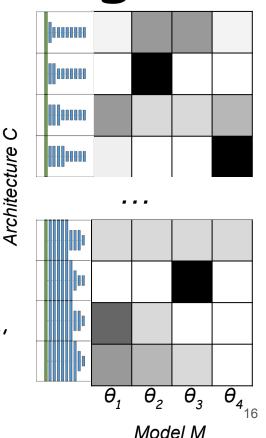
NAS for CNN pooling: Our Method

Balanced Mixture of SuperNets

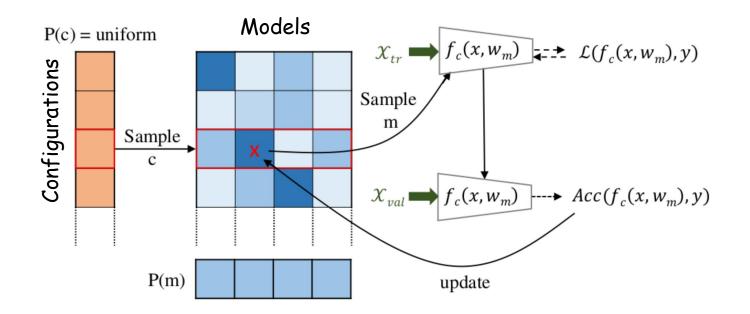
- Sample uniformly on $C \rightarrow$ No bias during training Optimal configuration chosen after
- Multiple Models \rightarrow

- Each architecture config. C is associated to Model M, but same marginal probability for each model

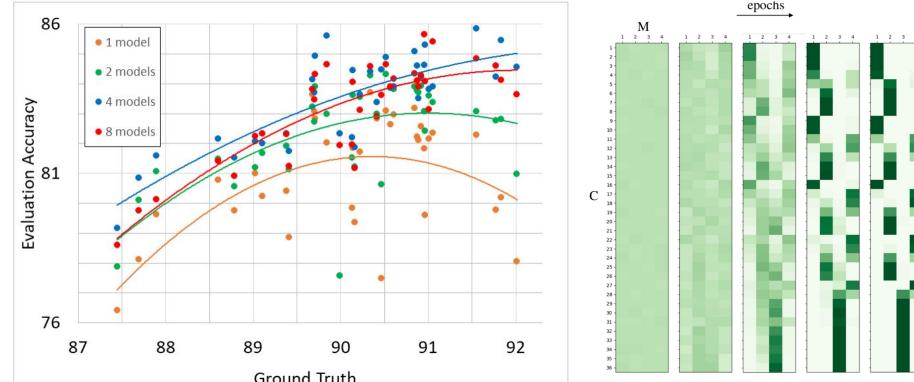
- Reduces interference between different configs.



NAS for CNN pooling: Balances Mixtures of SuperNets



NAS for CNN pooling: Evaluation CIFAR 10



NAS for CNN pooling: Evaluation on CIFAR10

NAS Method	Architecture	Accuracy	Training (GPU hours
DARTS + GAEA	Fig. 4a	89.12 ± 0.1	12
DARTS	Fig. 4a	89.23 ± 0.08	12
SBE + Unif. Smp.	[1,6,3]	90.13 ± 0.06	2.5
SPOS	[4,2,4]	90.34 ± 0.12	1.5
MCTS UCB	[4,2,4]	90.34 ± 0.12	2.5
SBE	[2,3,5]	90.42 ± 0.08	2
Default	[4,3,3]	90.52 ± 0.10	-
MCTS UCB + Unif. Smp.	[4,4,2]	90.85 ± 0.09	2.5
Balanced Mixtures (Ours)	[5,3,2]	91.55 ± 0.08	6
Best conf. (Bruteforce)	[7,1,2]	92.01 ± 0.12	98

Balanced Mixtures is the only model that gets close the the optimal pooling configuration.

NAS for CNN pooling: ImageNet & Food 101

Models	top-1 Arch.	top-1	top-3 Best	Best Arch.	Accuracy
Default	[2,2,2,2]	68.32 ± 0.24	NA	[3,4,6,3]	84.00 ± 0.10
M = 1	[1,3,1,3]	62.21 ± 0.26	65.91 ± 0.21	[6,4,5,1]	84.24 ± 0.09
M = 2	[3,1,1,3]	62.56 ± 0.18	68.32 ± 0.24	[4,5,6,1]	84.34 ± 0.18
M = 4	[5,1,1,1]	65.88 ± 0.24	66.12 ± 0.18	[8,3,3,2]	84.35 ± 0.14
M = 8	[2,3,2,1]	64.81 ± 0.11	66.12 ± 0.23	[9,4,2,1]	84.73 ± 0.09

- On ImageNet best model is the original pooling configuration because ResNet is optimized on it!
- On Food 101 more models and more improvement.

Automatic Data Augmentation

Saypraseuth Mounsaveng, Issam Laradji, Ismail Ben Ayed, David Vazquez, Marco Pedersoli, "Learning data augmentation with online bilevel optimization for image classification", WACV2021

Automatic DA Bilevel Optimization

 $heta^* = rgmin\mathcal{L}(f(\mathcal{X}_{val}, w^*), \mathcal{Y}_{val})$ $w^* = rgmin \mathcal{L}(f(\mathcal{T}_{\theta}(\mathcal{X}), w), \mathcal{Y})$ W

- More challenging than Model
 Selection because Ø does not
 appear in the upper-optimisation
- T = transformation Network

Automatic DA Previous Work

$$egin{aligned} & heta^* = rgmin \mathcal{L}(f(\mathcal{X}_{val}, w^*), \mathcal{Y}_{val}) \ &w^* = rgmin \mathcal{L}(f(\mathcal{T}_{oldsymbol{ heta}}(\mathcal{X}), w), \mathcal{Y}) \ &w \end{aligned}$$

Autoaugment optimizes the bilevel objective by sampling an augmentation policy θ and estimating $\nabla_{\theta} \mathcal{L}(f(\mathcal{X}_{val}, w^*), \mathcal{Y}_{val})$ with RL.

Very slow: a complete training for each inner iteration!

Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, Quoc V. Le, AutoAugment: Learning Augmentation Policies from Data,, CVPR 2019.

Automatic DA Previous Work

$$egin{aligned} & heta^* = rgmin \mathcal{L}(f(\mathcal{X}_{val}, w^*), \mathcal{Y}_{val}) \ &w^* = rgmin \mathcal{L}(f(\mathcal{T}_{oldsymbol{ heta}}(\mathcal{X}), w), \mathcal{Y}) \ &w \end{aligned}$$

Randaugment optimises only the magnitude of the transformations θ trying several values **Suboptimal and slow**: still a strong baseline

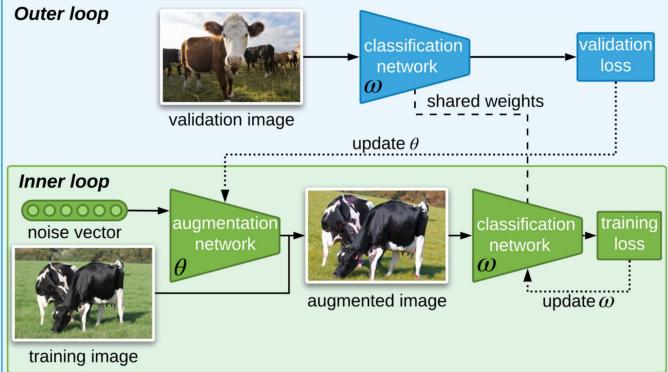
Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, Quoc V. Le, "RandAugment: Practical automated data augmentation with a reduced search space", NeurIPS 2020.

$$egin{aligned} & extsf{Automatic DA} \ & extsf{Our approach} \ & heta^* = rgmin \mathcal{L}(f(\mathcal{X}_{val}, w^*), \mathcal{Y}_{val}) \ & w^* = rgmin \mathcal{L}(f(\mathcal{T}_{m{ heta}}(\mathcal{X}), w), \mathcal{Y}) \end{aligned}$$

Instead of learning a policy, we learn the parameters Θ of a network that generates stochastic augmentations

Before Θ was a limited set of configurations/policies $\rightarrow |\Theta| < 1000$ Now Θ are the parameters of the Augmentation Network $\rightarrow |\Theta| > 1000$ We need to use gradient! Sampling approaches wouldn't work!

Automatic DA Our approach



Uses an Augmentation Network with parameters Ø

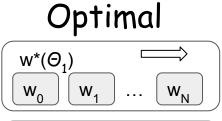
Learns to generate transformations which reduce validation loss 27

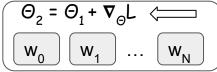
Automatic DA Approximations

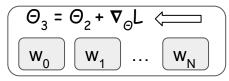
 $abla_{ heta} \mathcal{L}(f(\mathcal{X}_{val}, w^*), \mathcal{Y}_{val})$ Approximate w* with one iteration of $\nabla_w \mathcal{L}(f(\mathcal{T}_{ heta}(\mathcal{X}), w), \mathcal{Y})$ $\nabla_{ heta} \mathcal{L}(f(\mathcal{X}_{val}, w^*), \mathcal{Y}_{val}) \approx \nabla_{ heta} \mathcal{L}(f(\mathcal{X}_{val}, w - \nabla_w \mathcal{L}(\theta), \mathcal{Y}_{val}))$

Approximate $\nabla_{\theta} \mathcal{L}$ with a single unroll of the gradient with respect of w.

Automatic DA



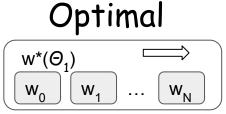


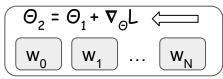


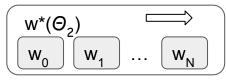
 $\begin{array}{c|c} w^*(\Theta_{\mathsf{K}}) & & & \\ \hline w_0 & w_1 & \dots & w_N \end{array} \end{array}$

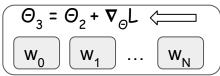
. . .

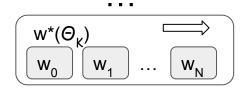
Automatic DA $\approx \nabla_{\theta} \mathcal{L}$

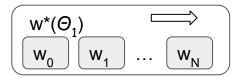


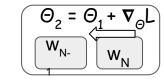


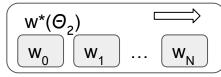


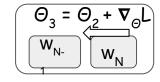


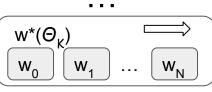




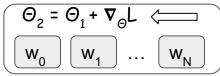


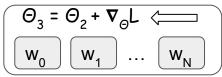


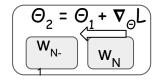


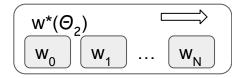


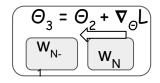
Optimal

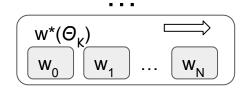


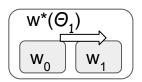


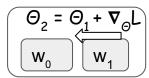


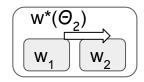


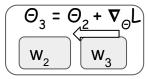


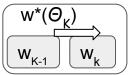












Automatic DA Results

ResNet18 / CIFAR10	Trans.	Affine	Cost
Baseline	88.55	88.55	1
Predefined	95.28	94.59	> 60
Transf. invariant (STN)	92.14	90.31	1.1
Validated magnitude	94.58	93.43	11.5
Our model	95.35	95.16	5.3

- Automatic DA is better than a transformation invariant model
- Augmentation Network is better than validated transformations

Automatic DA Results

	Classifier	CIFAR10	CIFAR100
Baseline	ResNet18	88.55	68.99
Predefined	ResNet18	91.18	73.61
Bayesian DA [50]	ResNet18	91.00	72.10
DAN [36]	BadGAN	93.00	-
TANDA [42]	ResNet56	94.40	-
AutoAugment [9]	ResNet32	95.50	-
Ours	ResNet18	95.42	74.31
Baseline	WRN 28-10	94.83	69.90
Predefined	WRN 28-10	95.76	81.10
AutoAugment	WRN 28-10	97.40	82.90
Fast AA	WRN 28-10	97.30	82.70
PBA	WRN 28-10	97.40	83.30
RandAugment	WRN 28-10	97.30	83.30
Our model	WRN 28-10	96.44	81.90

- Comparable with more complex training approaches
- On larger models, policy based methods seems still better than our Augmenter based approach

Learning with Latent Variables

Masih Aminbeidokhti, Marco Pedersoli, Patrick Cardinal, Eric Granger, "Emotion recognition with spatial attention and temporal softmax pooling", ICIAR 2019 best paper award.

Théo Ayral, Marco Pedersoli, Simon Bacon, Eric Granger, "Temporal Stochastic Softmax for 3D CNNs: An Application in Facial Expression Recognition", WACV 2021.

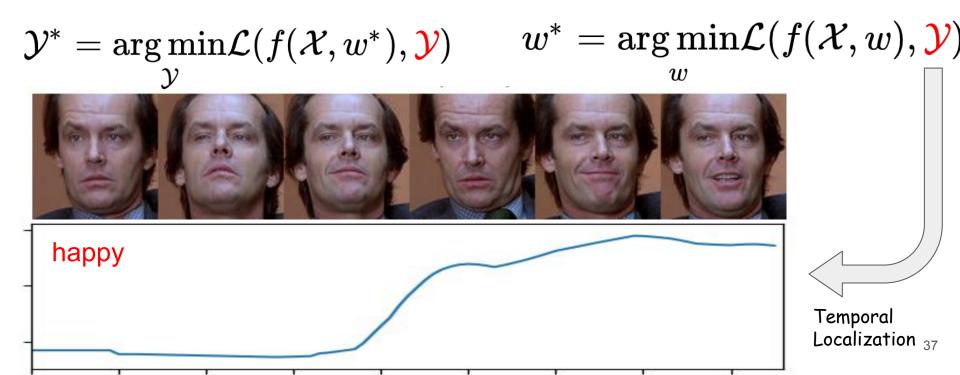
Akhil Meethal, Marco Pedersoli, Zhing Zhu, Françisco P Romero, Eric Granger, "Semi-Weakly Supervised Object Detection by Sampling Pseudo Ground-Truth Boxes", IJCNN 2022.

Learning with LV

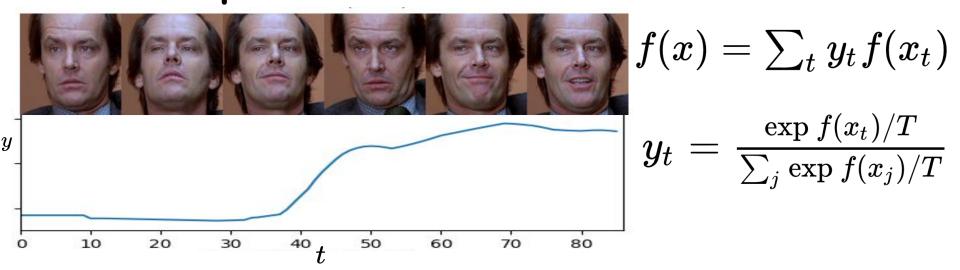
$$egin{aligned} \mathcal{Y}^* &= rgmin \mathcal{L}(f(\mathcal{X}_{val}, w^*), \mathcal{Y}_{val}) \ \mathcal{Y}^* &= rgmin \mathcal{L}(f(\mathcal{X}, w), \mathcal{Y}) \ & w \end{aligned}$$
 Simplified into:

$$egin{aligned} \mathcal{Y}^* &= rgmin \mathcal{L}(f(\mathcal{X}, w^*), \mathcal{Y}) \ \mathcal{Y} &= rgmin \mathcal{L}(f(\mathcal{X}, w), \mathcal{Y}) \ w \end{aligned}$$

Learning with LV Temporal localization for FER



Learning with LV Temporal localization for FER



Softmax pooling: generalization of average and max pooling:

- when $T \rightarrow +inf$ average pooling
- when T = 0 max pooling

But, large models cannot fit the entire video in memory!!!

Uniform Sampling of average pooling (previous approaches*)

$$f(x) = rac{1}{N} \sum_{t=1}^N f(x_t) ~~~pprox rac{1}{K} \sum_{k=1}^K f(x_s) ~,~~ s \sim \mathcal{U}$$

Uniform Sampling of weighted Temporal Pooling $f(x) = \sum_{t=1}^N y_t f(x_t) ~~pprox rac{N}{K} \sum_{k=1}^K y_s f(x_s) ~,~~ s \sim \mathcal{U}$

Importance Sampling of weighted Temporal Pooling (ours) $f(x) = \sum_{t=1}^N y_t f(x_t) \quad pprox rac{1}{K} \sum_{k=1}^K f(x_s) \,, \,\, s \sim \mathcal{M}(y)$

* Joao Carreira, Andrew Zisserman, "Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset", CVPR 2017.

Uniform Sampling of average pooling $f(x) = rac{1}{N} \sum_{t=1}^N f(x_t) ~~pprox rac{1}{K} \sum_{k=1}^K f(x_s) ~,~~ s \sim \mathcal{U}$

- + Reduced memory and computation
- + Same objective in expectation
- Considering every part of the video in the same way
- Increased variance due to the sum estimation

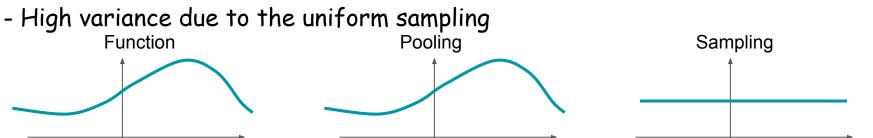


Uniform Sampling of weighted Temporal Pooling

$$f(x) = \sum_{t=1}^N y_t f(x_t) \quad pprox rac{N}{K} \sum_{k=1}^K y_s f(x_s) \,, \,\, s \sim \mathcal{U}$$

+ Reduced memory and computation

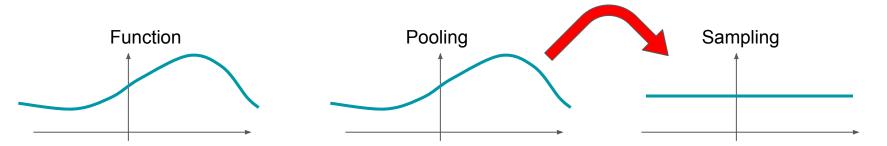
- + Same objective in expectation
- + Can focus on the most important frames with Softmax Pooling
- + Can still estimate w with backprop as using uniform sampling



42

Importance Sampling of weighted Temporal Pooling $f(x) = \sum_{t=1}^N y_t f(x_t) \quad pprox rac{N}{K} \sum_{k=1}^K y_s f(x_s) \,, \,\, s \sim \mathcal{U}$

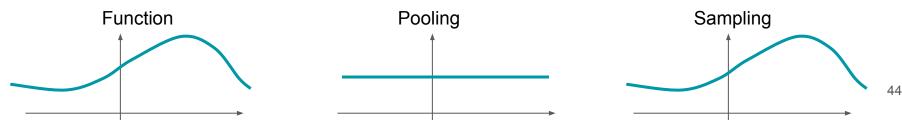
Instead of applying a weight y to f we sample with an importance y Same objective but lower variance!



43

Importance Sampling of weighted Temporal Pooling $f(x) = \sum_{t=1}^N y_t f(x_t) \quad pprox rac{1}{K} \sum_{k=1}^K f(x_s) \,, \,\, s \sim \mathcal{M}(y)$

- + Reduced memory and computation
- + Same objective in expectation
- + Can focus on the most important frames with Softmax Pooling
- + Reduced variance due to the Multinomial sampling proportional to the frame importance
- Cannot estimate w with backpropagation due to Multinomial sampling



Learning with LV Our Approach

Multinomial Sampling proportional to y

$$f(x) = \sum_{t=1}^N y_t f(x_t) ~~pprox rac{1}{K} \sum_{k=1}^K f(x_s) ~,~~ s \sim \mathcal{M}(y)$$

How to estimate y?

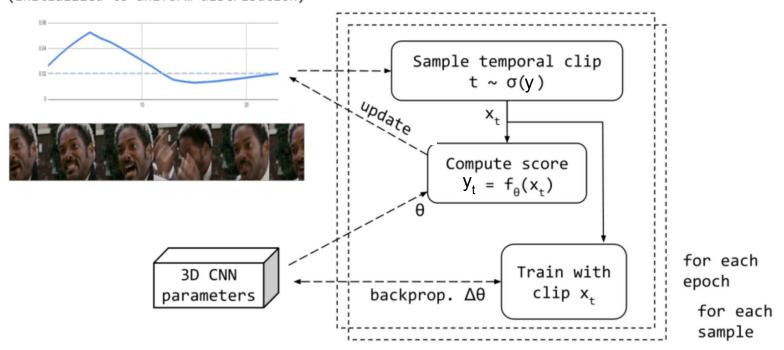
For each sample s:
$$q_s = eta q_s + (1-eta) f(x_s)$$

Re-normalize: $y_t = rac{\exp(q_t)}{\sum_i \exp(q_i)}$

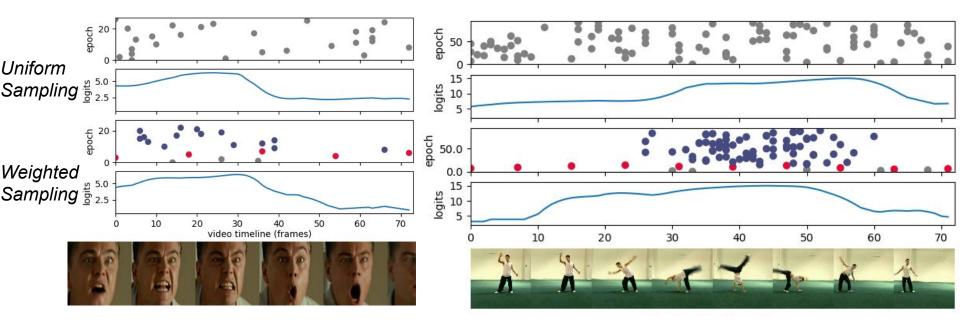
Thus:
$$y_t pprox rac{\exp(f(x_s))}{\sum_i \exp(f(x_i))}$$

Learning with LV Our Approach

Running estimate of clip scores (initialized to uniform distribution)



Learning with LV Results



Learning with LV Results

Inverse	REINFORCE		Ours Softmax	
Temp.	Acc.(%)	Ep.	Acc.(%)	Ep.
$\gamma = 0$	$45.66 \pm .21$	24.6	$45.66 \pm .21$	24.6
$\gamma = 0.5$	$46.09 \pm .41$	23.8	$46.07 \pm .27$	23.6
$\gamma = 1$	$46.80 \pm .63$	22.5	47.35 \pm .27	20.3
$\gamma = 10$	$44.52 \pm .18$	17.5	$46.65 \pm .40$	17.2

- With correct temperature faster and better training than uniform sampling

Learning with LV Results

Method	Model	Acc. (%)
Lu et al., 2018 [31]	3D VGG-16	39.36
Fan <i>et al.</i> , 2016 [11]	C3D	39.69
Vielzeuf et al.,	C3D-LSTM	43.2
2017 [51]	C3D Weighted	42.1
C3D baseline	C3D (uniform)	39.95
C3D with Softmax	C3D ($\gamma = 1$)	42.78
VGG baseline	3D VGG-16 (unif.)	45.66
VGG with Softmax	3D VGG-16 ($\gamma = 1$)	47.35

- Better than other models with uniform sampling on different backbones

Conclusions

- In learning, we need not only to fit the data, but also to:
 - generalize
 - select the model
 - learn with missing/noisy data
- We can cast all these problems as bilevel optimization
- Thus, learning is a Bilevel Optimization problem!

Looking for collaborations

- Bilevel optimization

- Better theoretical understanding
- New approximations and applications
- Sampling-based learning
 - Connections with RL and multi-armed Bandit
 - Further exploration / new applications
- Transformer/Large Language Models
 - Reduce quadratic constraints
 - Work on connection between text and vision