The Promise of AI for Personalized Medicine based on Medical Images

Les promesses de l'IA pour une médecine personnalisée basée sur les images médicales

Tal Arbel, PhD

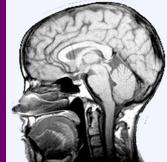
Professor, McGill University

Canada CIFAR AI Chair, Mila

Department of Electrical and Computer Engineering

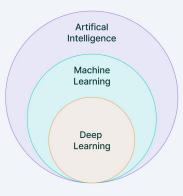
Director Probabilistic Vision Group, Medical Imaging Lab

Centre for Intelligent Machines

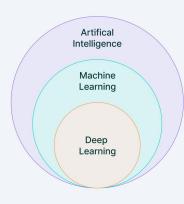


ila

Machine Learning

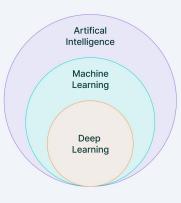


Machine Learning



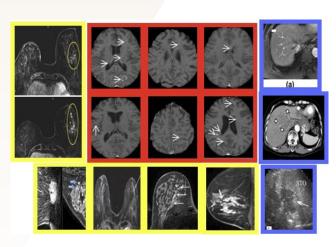
Computer Vision

Machine Learning

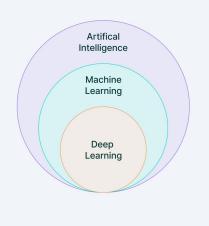


Computer Vision

Medical Image Analysis

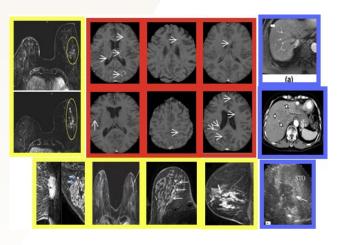


Machine Learning



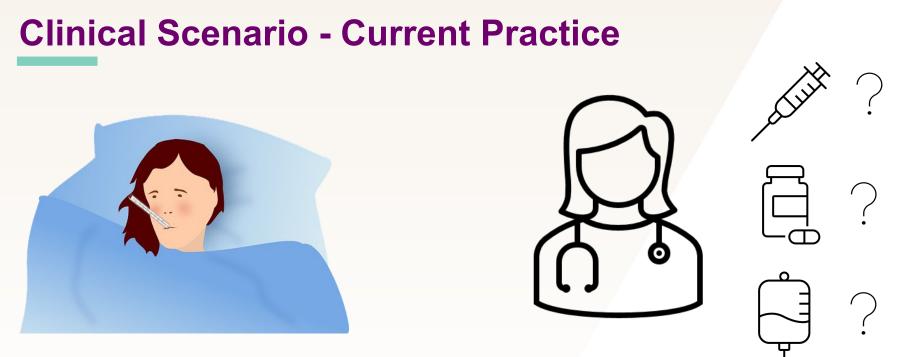
Computer Vision

Medical Image Analysis

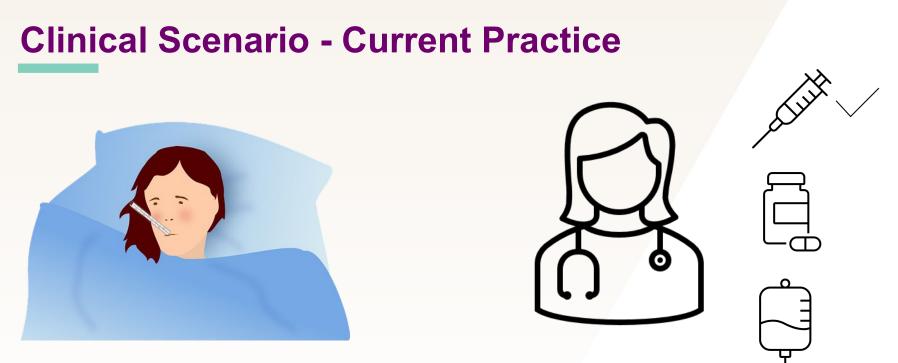


Real clinical applications: AI medical image analysis tools developed in my lab used in analysis of clinical trials for <u>almost all</u> new treatments for multiple sclerosis

Clinical Scenario - Current Practice

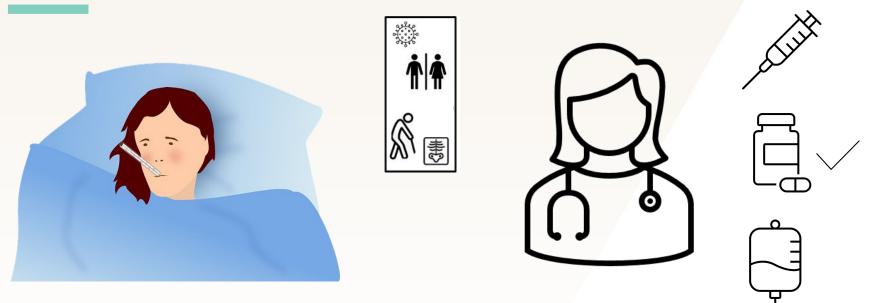


• Variety of treatments available for this patient's illness



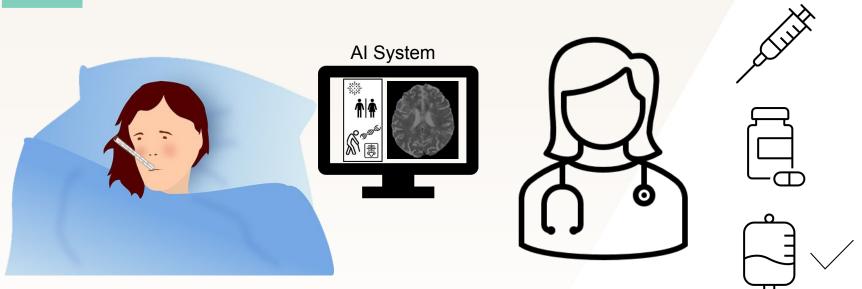
- Variety of treatments available for this patient's illness
- Treatment decision based on efficacy:
 - Average treatment efficacy across population, choose highest

Clinical Scenario – Personalized Medicine



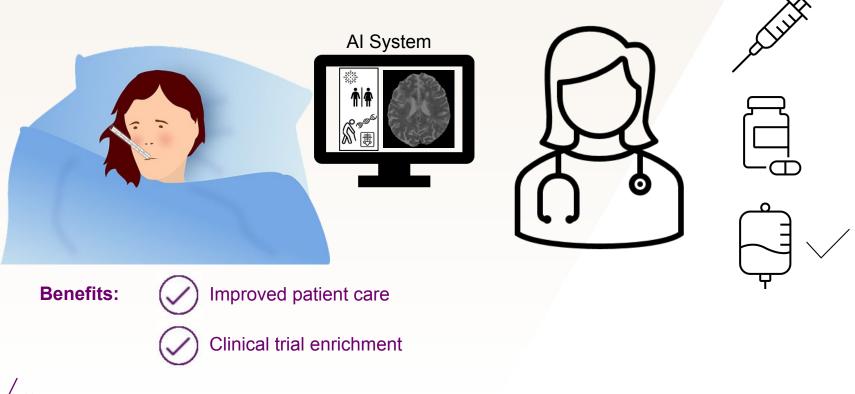
- Clinical and demographic information available
- **Treatment decision:** Average treatment efficacy conditioned on sub-group statistics

The Promise of AI for Image-Based Personalized Medicine

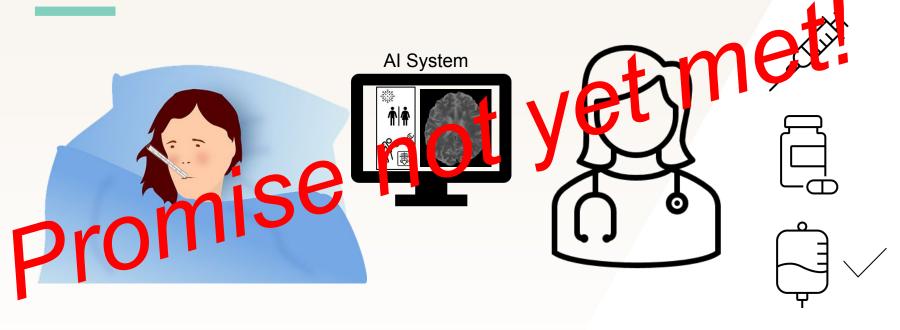


- Integrate clinical, demographic and medical images into AI system
- Provide clinicians with an <u>AI tool</u> which predicts future individual treatment response on several treatments using <u>discovered image features</u>

The Promise of AI for Image-Based Personalized Medicine

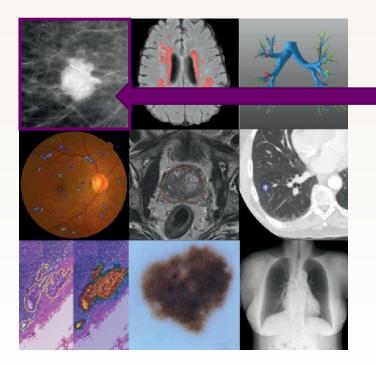


The Promise of AI for Image-Based Personalized Medicine



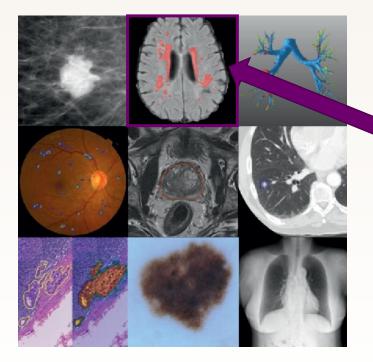
12

Deep Learning for Medical Image Analysis



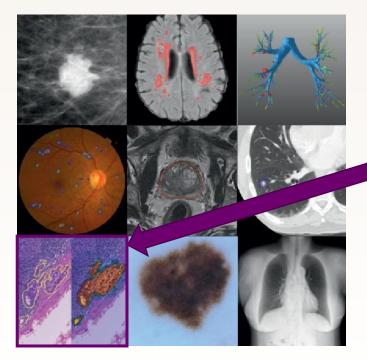
Medical imaging applications where deep learning models have achieved the SOTA Mammographic mass classification Segmentation of lesions in the brain Breast cancer metastases detection

Deep Learning for Medical Image Analysis



Medical imaging applications where deep learning models have achieved the SOTA Mammographic mass classification Segmentation of lesions in the brain Breast cancer metastases detection

Deep Learning for Medical Image Analysis



Medical imaging applications where deep learning models have achieved the SOTA Mammographic mass classification Segmentation of lesions in the brain Breast cancer metastases detection

Why haven't they been widely integrated into clinical workflow?

https://www.sciencedirect.com/science/article/pii/S1361841517301135

Very large medical images but ... Lack of relevant training data

Very large medical images but ... Lack of relevant training data

 Not <u>robust/generalizable</u> to real patient/data/label variability

	•	•	•	·	•	•	•	•	•	•	•
ARTIFICIAL INTELLIGENCE											
		-	•	•				•		•	
Hundreds of Al tools have been b		П	t	t	0	C	X		C	h	1
Hundreds of AI tools have been k)Ų	II.	ţ	ţ	0	C)2	at	C	h):
Rundreds of Al tools have been to covid. None of them helped.)Ų	 	ţ	t	0	C); ;	at	C	ĥ): :

https://www.technologyreview.com/2021/07/30/1030329/machine-learning-ai-failed-covid-hospital-diagnosis-pandemic/

Very large medical images but ... Lack of relevant training data

- Not <u>robust/generalizable</u> to real patient/data/label variability
- DL for medical imaging make (potentially deadly) <u>mistakes</u>.

Researchers Investigate When, How Healthcare AI Models Will Fail

https://healthitanalytics.com/news/researchers-investigate-when-how-healthcare-ai-models-will-fail

Very large medical images but ... Lack of relevant training data

- Not <u>robust/generalizable</u> to real patient/data/label variability
- DL for medical imaging make (potentially deadly) <u>mistakes</u>.

Researchers Investigate When, How Healthcare AI Models Will Fail

Need to convey uncertainty in AI predictions!

https://healthitanalytics.com/news/researchers-investigate-when-how-healthcare-ai-models-will-fail

Lack of Interpretability of Deep Learning Models

"A challenge to radiologists embracing AI in practice is that we don't really understand how AI arrives at a particular conclusion"



Dr. McGinty, Chair of the American College Radiology Board of Chancellors, *MICCAI 2018*

Lack of Interpretability of Deep Learning Models

"A challenge to radiologists embracing AI in practice is that we don't really understand how AI arrives at a particular conclusion"

Dr. McGinty, Chair of the American College Radiology Board of Chancellors, *MICCAI 2018*

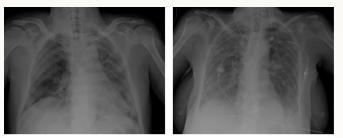
Need to open up the black box!

Deep Learning Models Can Be Biased

BRIEF REPORT | APPLIED MATHEMATICS | 👌

f 🍠 in 🖾 🧕

Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis

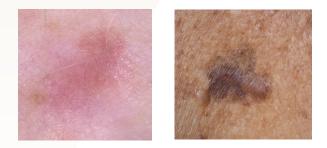


(a) Male

(b) Female

AI skin cancer diagnoses risk being less accurate for dark skin - study

Research finds few image databases available to develop technology contain details on ethnicity or skin type



² https://www.pnas.org/doi/10.1073/pnas.1919012117

https://www.theguardian.com/society/2021/nov/09/ai-skin-cancer-diagnoses-risk-being-less-accurate-for-dark-skin-study

Deep Learning Models Can Be Biased

BRIEF REPORT | APPLIED MATHEMATICS | 👌

f 🍠 in 🖂 🧕

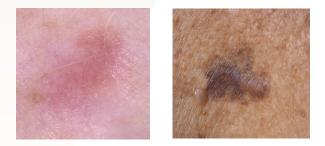
Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis

(a) Male

(b) Female

AI skin cancer diagnoses risk being less accurate for dark skin - study

Research finds few image databases available to develop technology contain details on ethnicity or skin type



³ https://www.pnas.org/doi/10.1073/pnas.1919012117

https://www.theguardian.com/society/2021/nov/09/ai-skin-cancer-diagnoses-risk-being-less-accurate-for-dark-skin-study

First deep learning model for personalized prediction from patients images

<u>Trustworthiness</u> and <u>reliability</u> of deep learning models needed in clinical applications:

First deep learning model for personalized prediction from patients images

<u>Trustworthiness</u> and <u>reliability</u> of deep learning models needed in clinical applications:

Uncertainty Estimation

First deep learning model for personalized prediction from patients images

<u>Trustworthiness</u> and <u>reliability</u> of deep learning models needed in clinical applications:

- Uncertainty Estimation
- Explainability & Discovery of predictive image markers

First deep learning model for personalized prediction from patients images

<u>Trustworthiness</u> and <u>reliability</u> of deep learning models needed in clinical applications:

- Uncertainty Estimation
- Explainability & Discovery of predictive image markers
- Improving fairness

First deep learning model for personalized prediction from patients images

<u>Trustworthiness</u> and <u>reliability</u> of deep learning models needed in clinical applications:

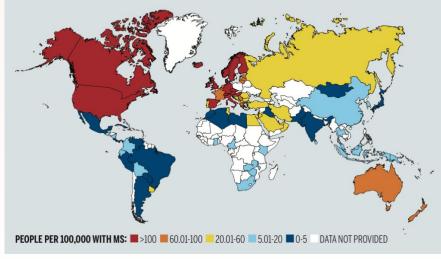
- Uncertainty Estimation
- Explainability & Discovery of predictive image markers
- Improving fairness

<u>**Case study</u>**: Multiple Sclerosis - Long term, complex neurological disease evolution</u>

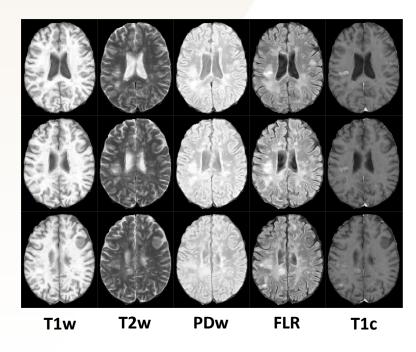
Most common neurological disease affecting young people; Canada has highest rate per capita.

ATLAS OF MULTIPLE SCLEROSIS

The 2013 map produced by the Multiple Sclerosis International Federation ranked Canada No. 1, with 291 cases per 100,000 people



Multi-focal brain lesions visible on MRI



https://macleans.ca/society/health/could-canada-cause-multiple-sclerosis/

Enlarging Lesion New Lesion **Baseline** After 2 years

Appearance of new/enlarging (NE) lesions on successive MRI scans important:

 MRI markers of new disease activity since previous scan

Enlarging Lesion New Lesion **Baseline** After 2 years

Appearance of new/enlarging (NE) lesions on successive MRI scans important:

- MRI markers of new disease activity since previous scan
- Treatments exist to help suppress new lesions, manage symptoms (not to stop progression)
 - Different efficacies
 - Risk profiles, etc.

Enlarging Lesion New Lesion **Baseline** After 2 years

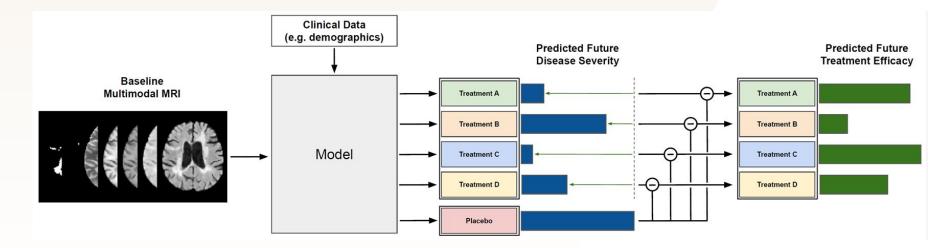
Appearance of new/enlarging (NE) lesions on successive MRI scans important:

- MRI markers of new disease activity since previous scan
- Treatments exist to help suppress new lesions, manage symptoms (not to stop progression)
 - Different efficacies
 - Risk profiles, etc.

• No Cure.

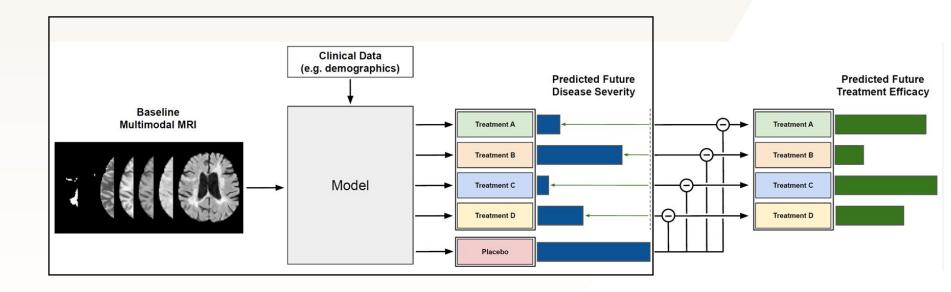
Deep Learning for Image-Based Precision Medicine

DL model that learns data driven imaging markers predictive of future disease progression for individual patients on and off treatment



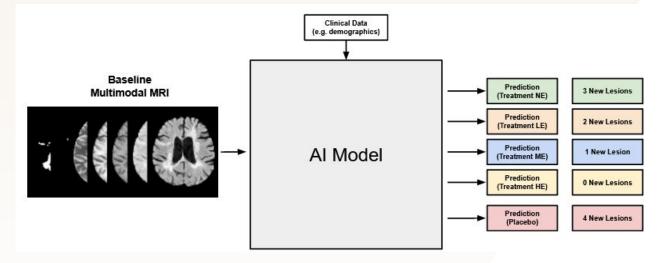
³³ Durso-Finley *et. al*, Conference on Medical Imaging with Deep Learning (MIDL) 2022

Deep Learning for Personalized Prediction of Future Outcomes on and off Treatment from Images (Part-1)



³⁴ Durso-Finley *et. al*, Conference on Medical Imaging with Deep Learning (MIDL) 2022

Al for Personalized Predictions of Future New Lesion Counts on and off Treatments from Images



System provides estimates of ***all*** treatment outcomes: **factual** and **counterfactual** (regardless of the true assignment)

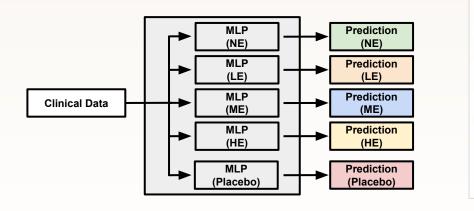
NE: No proven efficacy, LE: Lesser efficacy , ME: Moderate efficacy, HE: High efficacy

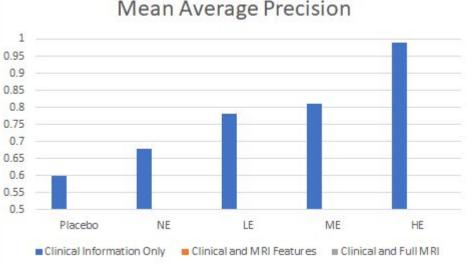
Durso-Finley *et. al*, Conference on Medical Imaging with Deep Learning (MIDL) 2022

Factual Model Results-Binarized Regression

Baseline 1:

Clinical features (Age, Sex, Baseline Disability)



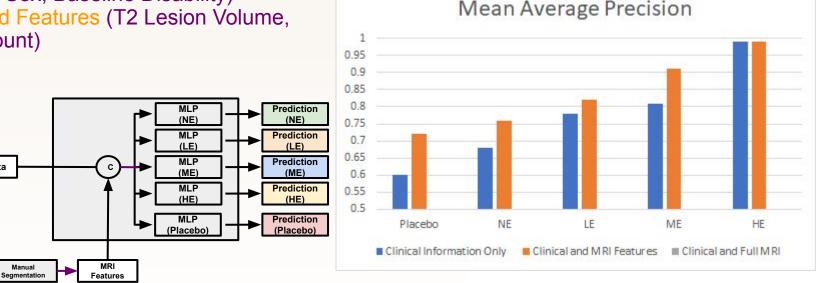


NE: No proven efficacy, LE: Lesser efficacy , ME: Moderate efficacy, HE: High efficacy

Factual Model Results-Binarized Regression

Baseline 2:

Clinical (Age, Sex, Baseline Disability) + MRI Derived Features (T2 Lesion Volume, Gad lesion count)



NE: No proven efficacy, LE: Lesser efficacy , ME: Moderate efficacy, HE: High efficacy

Baseline

MRI

Clinical Data

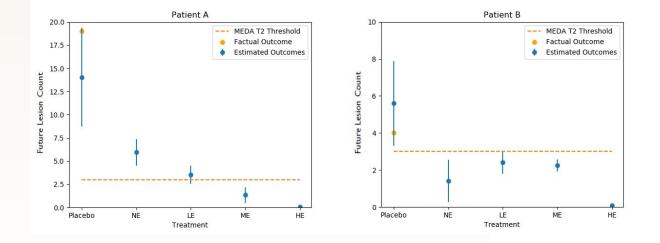
Factual Model Results-Binarized Regression

Our Model:

NE: No proven efficacy, LE: Lesser efficacy , ME: Moderate efficacy, HE: High efficacy

Deep Learning for Clinical Decision Support (Part 1)

Factual and Counterfactual Treatment Outcome Estimates

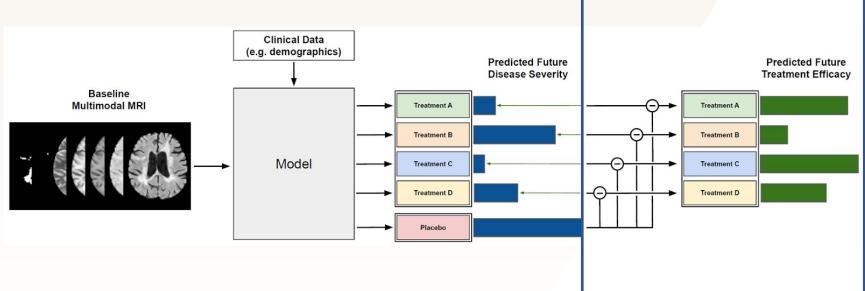


NE: No proven efficacy, **LE**: Lesser efficacy , **ME**: Moderate efficacy, **HE**: High efficacy **MEDA T2** threshold: >=3 NE lesions actionable number for DMT (therapy) escalation

Durso-Finley et. al, Conference on Medical Imaging with Deep Learning (MIDL) 2022

Deep Learning for Clinical Decision Support (Part 2)

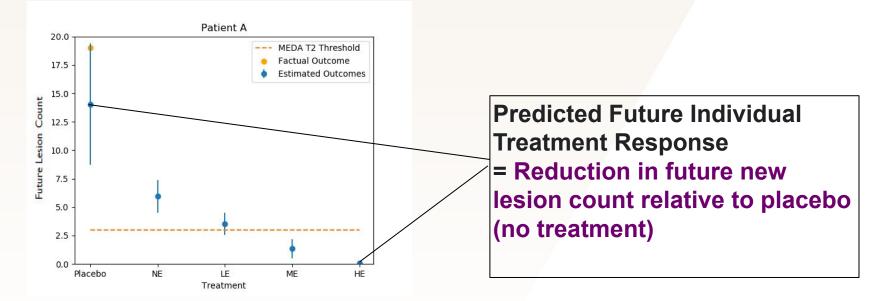
Predicting Future Treatment Effects



Causal effects of treatment on the outcome for a patient

Durso-Finley et. al, Conference on Medical Imaging with Deep Learning (MIDL) 2022

Estimating Future Personalized Treatment Response



NE: No proven efficacy, LE: Lesser efficacy, ME: Moderate efficacy, HE: High efficacy MEDA T2: 3 Future New T2 Lesions

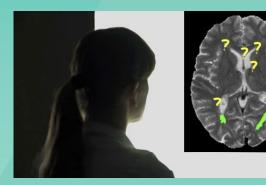
Durso-Finley et. al, Conference on Medical Imaging with Deep Learning (MIDL) 2022

Great! Are we ready for clinical deployment?

Image licensed under CC BY-SA-NC. Source: https://geekdoctor.blogspot.com/2021/08/we-need-to-open-up-ai-black-box.html?linkId=128170183

Trustworthy Image-Based Personalized Medicine

- Uncertainty Estimation
- Explainability
- Improving fairness



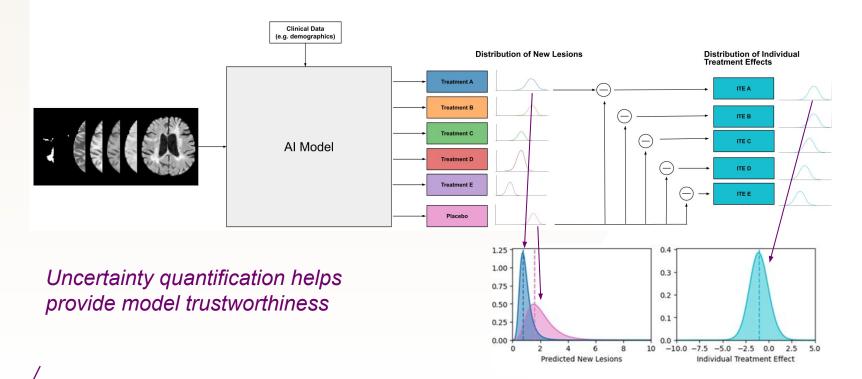
Trustworthy Image-Based Personalized Medicine

AI makes mistakes! High risk in handing over to clinician



made in form of uncertainty?

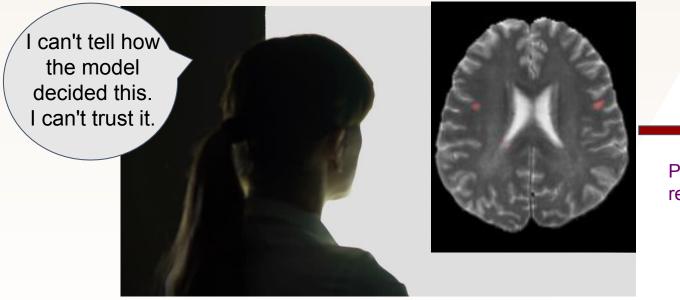
Trustworthy Treatment Effect Estimation



Trustworthy Image-Based Personalized Medicine

- Uncertainty Estimation
- Explainability
- Improving fairness

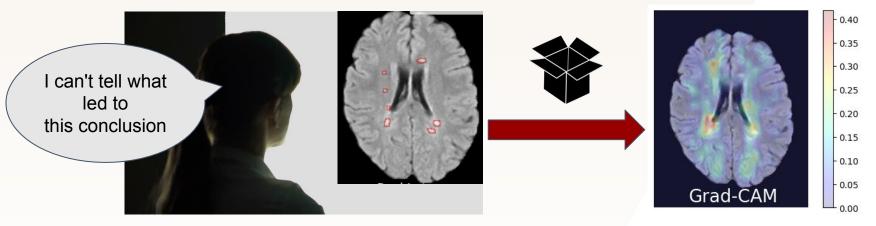
Trustworthy Image-Based Personalized Medicine



Patient will be a future responder to Treatment A

Explainable Deep Learning Models for Image Based Personalized Medicine – Opening up the black box

Future **responder** to treatment A



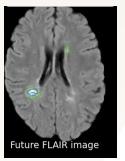
Where was the model looking at when it made its prediction?

What are the patient specific image markers that are predictive of future response?

Baseline



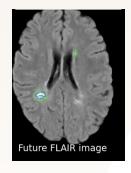


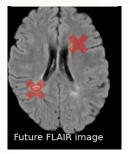


How would the patient's current (baseline) image change were it to have a different future disease outcome?

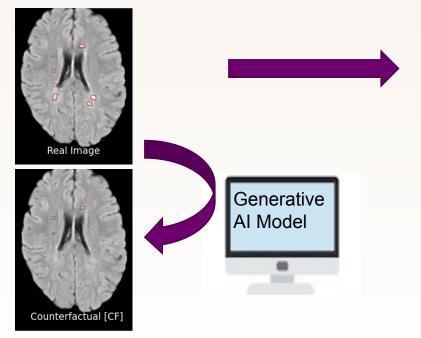
Baseline

Year 1

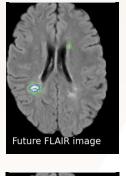


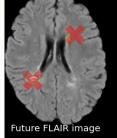


Baseline



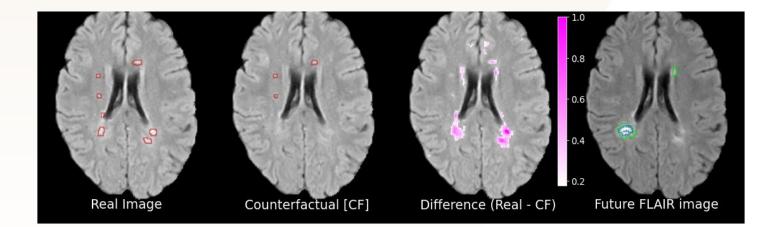
Year 1



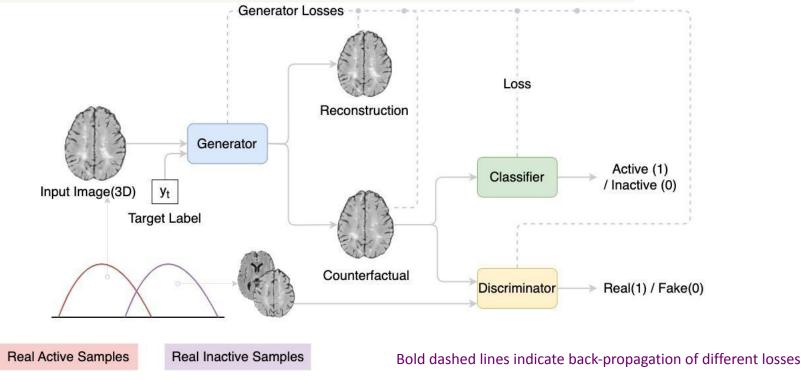


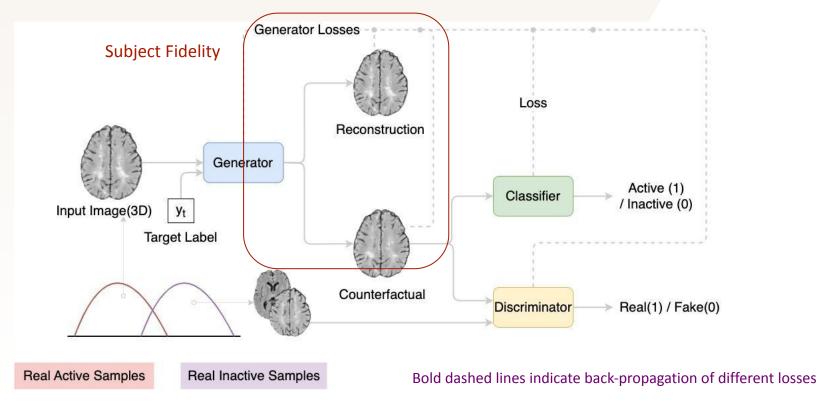
51 Kumar et. al, MIABID Workshop, MICCAI 2022

Identification of Personalized Image Markers Predictive of Future Patient Outcomes

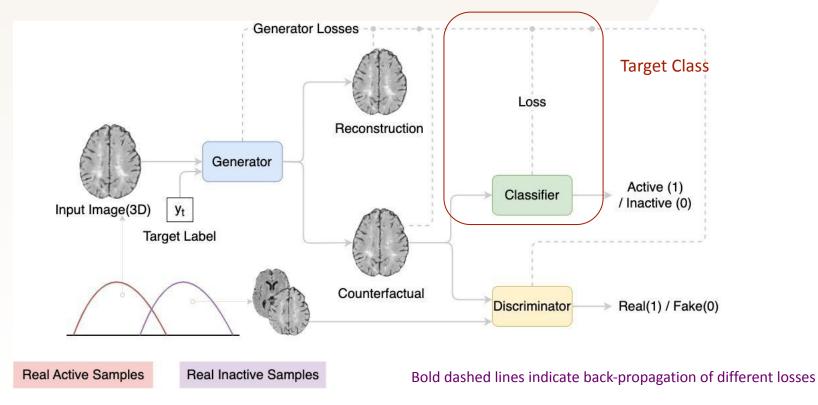


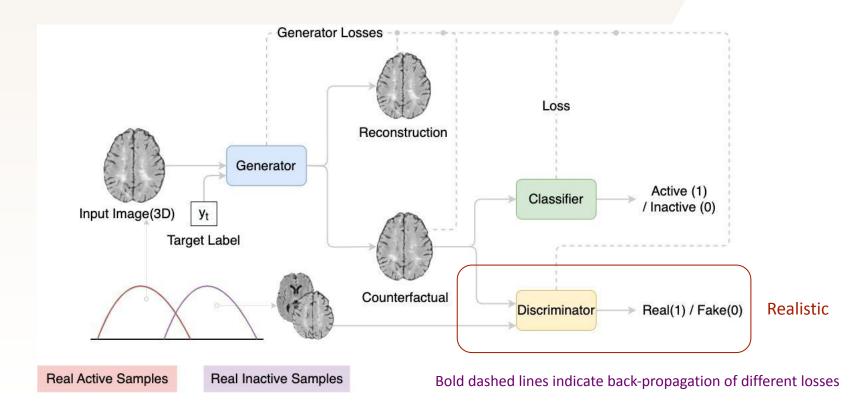
• Goal: CF image should maintain (i) subject fidelity, (ii) target class, (iii) realism





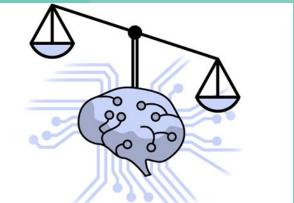
55





Trustworthy Image-Based Personalized Medicine

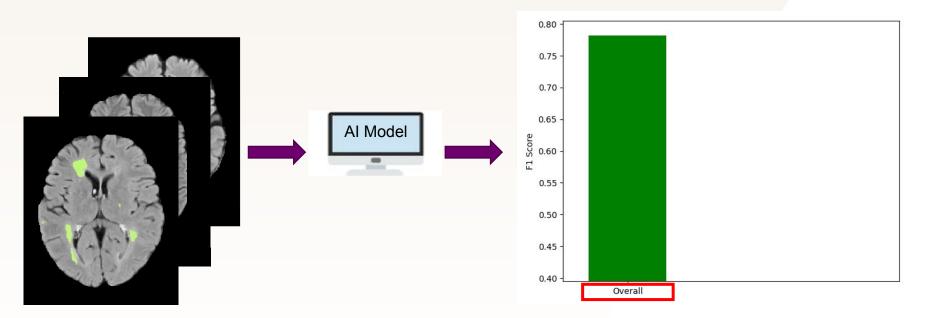
- Uncertainty Estimation
- Explainability
- Improving fairness



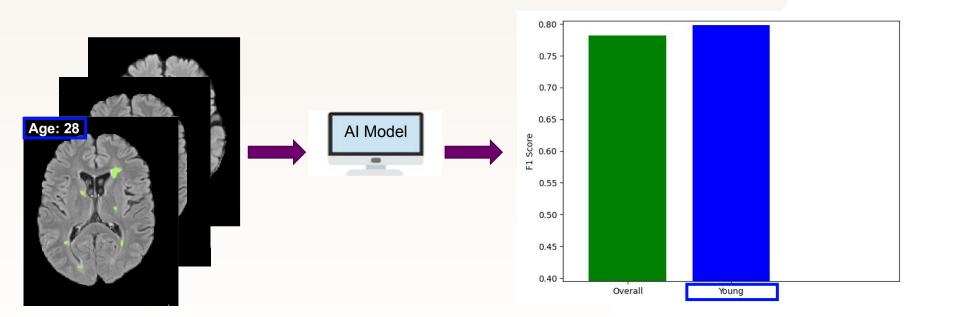
Trustworthy Image-Based Personalized Medicine

Biases in DL models across population subgroups

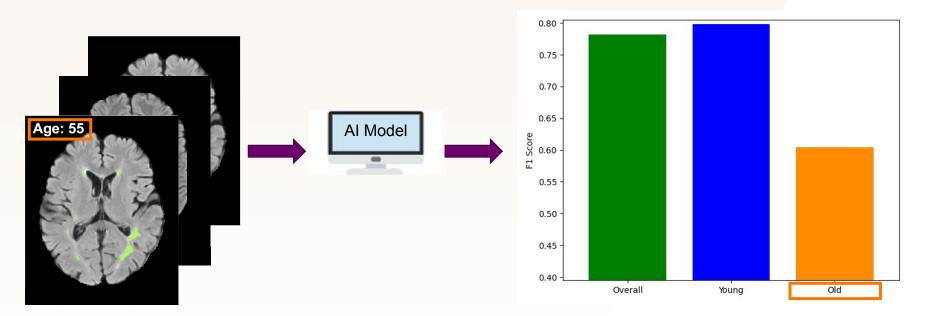
Mehta et. al, MIDL 2023 8 Shui et. al, NeurIPS 2022 Shui et. al, In submission.



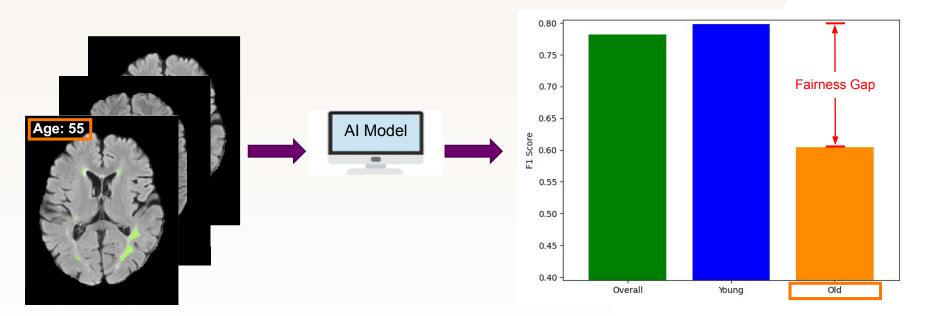
/ 59 Mehta et. al, MIDL 2023



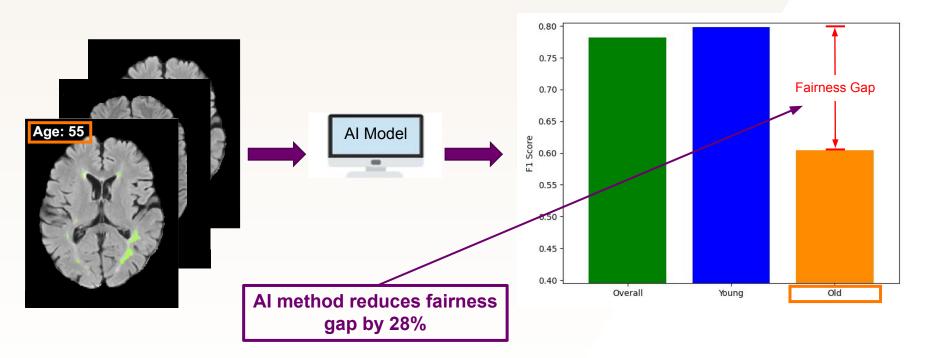
60 Mehta et. al, MIDL 2023



61 Mehta et. al, MIDL 2023



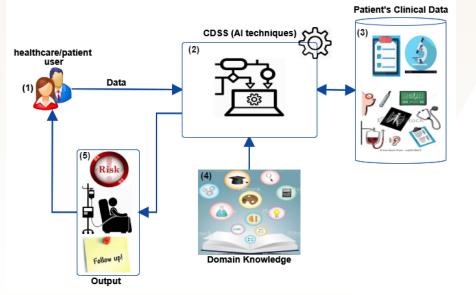
62 Mehta et. al, MIDL 2023



/ ₆₃ Mehta et. al, MIDL 2023

The Promise of AI for Clinical Decision Support

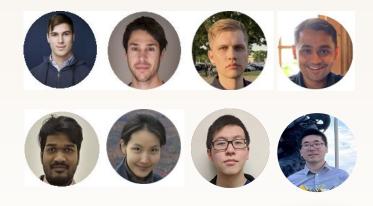
Provide clinicians with <u>trustworthy</u> AI tools to predict future individual treatment response on different treatments using *medical* images



64 https://www.mdpi.com/2072-6694/12/2/369

Thank you for your attention!

Probabilistic Vision Group



Collaborators

Douglas L. Arnold, Montreal Neurological Institute Sotirios Tsaftaris, University of Edinburgh Nick Powlowski, Microsoft Research Yarin Gal, Oxford University

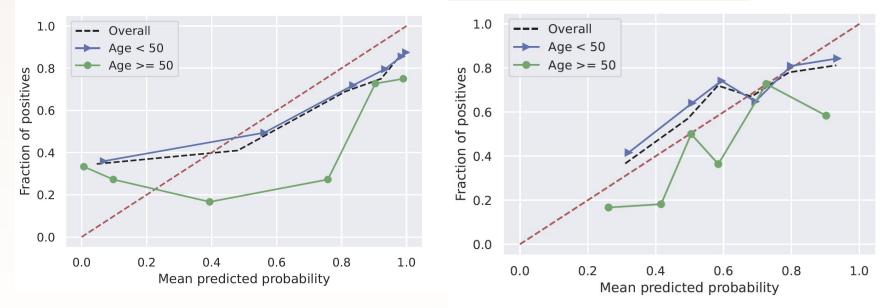
Sponsors

This work was made possible by Biogen, BioMS, MedDay, Novartis, Roche / Genentech, and Teva who generously provided the data

Extra Slides

Reliability Curve: With Bias

Reliability Curve: Mitigated Bias

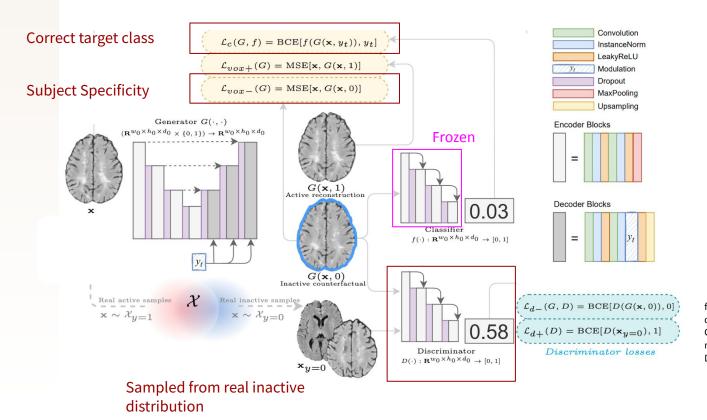


Shui et. al, In submission.

67

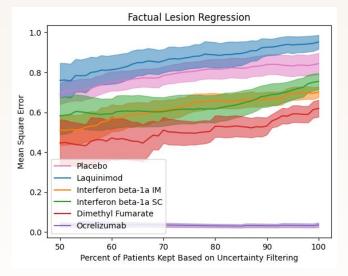
Counterfactual Synthesis

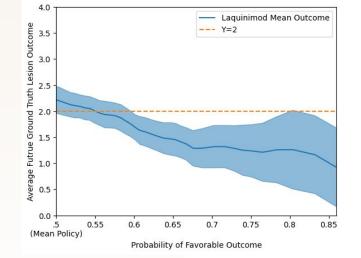
Generator losses



f(.) : binary future lesion activity classifierG(., .): Conditioned Generative moduleD(., .): Discriminator

Trustworthy Treatment Effect Estimation





Uncertainty quantification helps provide model trustworthiness