The Promise of Al for Personalized Medicine based on
Medical Images

Les promesses de I'lA pour une médecine personnalisée
basée sur les images médicales

Tal Arbel, PhD

Professor, McGill University

Canada CIFAR Al Chair, Mila
Department of Electrical and Computer Engineering

Director Probabilistic Vision Group, Medical Imaging Lab
Centre for Intelligent Machines

& McGill



Prof. Tal Arbel

Machine Learning

) Artifical
y: Intelligence X
4 N \
/
Machine
Learning

Deep /
Learning



Prof. Tal Arbel

Machine Learning Computer Vision

Artifical
Intelligence
7 Machine
/ / !
/ / Learning \

Deep

|
! Learning //’
N

=




Prof. Tal Arbel

Machine Learning Computer Vision Medical Image Analysis

g -
Artifical
Intelligence

g Machine
Learning

Deep
Learning




Prof. Tal Arbel

Machine Learning Computer Vision Medical Image Analysis

Artlflcal
Intelligence

Machine
Learning

Deep
Learning

Real clinical applications: Al medical image analysis tools developed in my lab used in
7na|ysis of clinical trials for almost all new treatments for multiple sclerosis
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Clinical Scenario - Current Practice
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e Variety of treatments available for this patient’s illness

e Treatment decision based on efficacy:

/ e Average treatment efficacy across population, choose highest




Clinical Scenario — Personalized Medicine
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e Clinical and demographic information available

e Treatment decision: Average treatment efficacy conditioned on sub-group
statistics




The Promise of Al for Image-Based Personalized

Medicine
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e Integrate clinical, demographic and medical images into Al system '

e Provide clinicians with an Al tool which predicts future individual treatment response
on several treatments using discovered image features
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Benefits: @ Improved patient care

@ Clinical trial enrichment
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Deep Learning for Medical Image Analysis

Medical imaging applications where deep
learning models have achieved the SOTA

Mammographic mass classification
Segmentation of lesions in the brain

Breast cancer metastases detection

/ https://www.sciencedirect.com/science/article/pii/S1361841517301135
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Deep Learning for Medical Image Analysis

Medical imaging applications where deep
learning models have achieved the SOTA

Mammographic mass classification
Segmentation of lesions in the brain

Breast cancer metastases detection

/ Why haven’t they been widely integrated into clinical workflow?

https://www.sciencedirect.com/science/article/pii/S1361841517301135



Unique Challenges: Deep Learning in the Clinic

Very large medical images but
... Lack of relevant training data



Unique Challenges: Deep Learning in the Clinic

Very large medical images but

... Lack of relevant training data
* Not robust/generalizable to real

ARTIFICIAL INTELLIGENCE

Hundreds of Al tools have been built to catch
patient/data/label variability covid. None of them helped.

/ https://www.technologyreview.com/2021/07/30/1030329/machine-learning-ai-failed-covid-hospital-diagnosis-pandemic/



Unique Challenges: Deep Learning in the Clinic

Very large medical images but

... Lack of relevant training data
* Not robust/generalizable to real
patient/data/label variability

> Pl imesies et il e Researchers Investigate When, How
(potentially deadly) mistakes. Healthcare Al Models Will Fail

/ https://healthitanalytics.com/news/researchers-investigate-when-how-healthcare-ai-models-will-fail



Unique Challenges: Deep Learning in the Clinic

Very large medical images but

... Lack of relevant training data
* Not robust/generalizable to real
patient/data/label variability

DL for medical imaging make Researchers Investigate When, How
(potentially deadly) mistakes. Healthcare Al Models Will Fail

mmm) Need to convey uncertainty in Al predictions!

/ https://healthitanalytics.com/news/researchers-investigate-when-how-healthcare-ai-models-will-fail



Lack of Interpretability of Deep Learning Models

“A challenge to radiologists
- embracing Al in practice is
= that we don’t really

understand how Al arrives at
a particular conclusion”

Dr. McGinty, Chair of the American College Radiology Board of
Chancellors, MICCAI 2018



Lack of Interpretability of Deep Learning Models

“A challenge to radiologists
- embracing Al in practice is
= that we don’t really

| understand how Al arrives at
a particular conclusion”

Dr. McGinty, Chair of the American College Radiology Board of
Chancellors, MICCAI 2018

=) Need to open up the black box!



BRIEF REPORT | APPLIED MATHEMATICS | 3 fY¥Yine S

Gender imbalance in medical imaging
datasets produces biased classifiers for
computer-aided diagnosis

(a) Male (b) Female

https://www.pnas.org/doi/10.1073/pnas.1919012117
https://www.theguardian.com/society/2021/nov/09/ai-skin-cancer-diagnoses-risk-being-less-accurate-for-dark-skin-study

Deep Learning Models Can Be Biased

Al skin cancer diagnoses risk being less
accurate for dark skin - study

Research finds few image databases available to develop
technology contain details on ethnicity or skin type
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Gender imbalance in medical imaging
datasets produces biased classifiers for
computer-aided diagnosis

(a) Male (b) Female

Deep Learning Models Can Be Biased

Al skin cancer diagnoses risk being less
accurate for dark skin - study

Research finds few image databases available to develop
technology contain details on ethnicity or skin type

mm) Need to mitigate the biases

https://www.pnas.org/doi/10.1073/pnas.1919012117
https://www.theguardian.com/society/2021/nov/09/ai-skin-cancer-diagnoses-risk-being-less-accurate-for-dark-skin-study
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*First* deep learning model for personalized prediction from patients
Images

Trustworthiness and reliability of deep learning models needed in clinical
applications:
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Overview of the Talk

*First* deep learning model for personalized prediction from patients
Images
Trustworthiness and reliability of deep learning models needed in clinical
applications:

* Uncertainty Estimation

* Explainability & Discovery of predictive image markers

* Improving fairness

Case study: Multiple Sclerosis - Long term, complex neurological
disease evolution

/




Case Study: Multiple Sclerosis

Most common neurological disease affecting young
people; Canada has highest rate per capita.

Multi-focal brain lesions visible on MRI

ATLAS OF MULTIPLE SCLEROSIS

The 2013 map produced by the Multiple Sclerosis International Federation
ranked Canada No. 1, with 291 cases per 100,000 people
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PEOPLE PER 100,000 WITH MS: I >100 M 60.01-100 ~ 20.01-60 * 5.01-20 l0-5 DATANOT PROVIDED
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https://macleans.ca/society/health/could-canada-cause-multiple-sclerosis/



Case Study: Multiple Sclerosis
Enlarging Lesion | New Lesion I

Appearance of new/enlarging (NE)
lesions on successive MRI scans
important:

e MRI markers of new disease activity
since previous scan

Baseline After 2 years
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¥ * MRI markers of new disease activity
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to stop progression)
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o Risk profiles, etc.
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Case Study: Multiple Sclerosis
Enlarging Lesion | New Lesion I

Appearance of new/enlarging (NE)
lesions on successive MRI scans
important:

¥ * MRI markers of new disease activity
since previous scan

d * Treatments exist to help suppress
new lesions, manage symptoms (not
to stop progression)

o Different efficacies

o Risk profiles, etc.

e No Cure.

Baseline After 2 years




Deep Learning for Image-Based Precision
Medicine

DL model that learns data driven imaging markers predictive of future
disease progression for individual patients on and off treatment

Clinical Data
(e.g. demographics)
Predicted Future Predicted Future
l Disease Severity Treatment Efficacy
Baseline i |
Multimodal MRI - ! ﬁ)-» TreatnentA |_
R AR —— -
Mogel O [ —
—[ | — |

/ Durso-Finley et. al, Conference on Medical Imaging with Deep Learning (MIDL) 2022



Deep Learning for Personalized Prediction of Future
Outcomes on and off Treatment from Images (Part-1)

Baseline
Multimodal MRI

Clinical Data
(e.g. demographics)

!

Model

Predicted Future
Disease Severity

'
'
'
'
'
'
_‘_1
'
'
'

Treatment A
Treatment B
Treatment (o3
Treatment D
Placebo

/ Durso-Finley et. al, Conference on Medical Imaging with Deep Learning (MIDL) 2022

Predicted Future
Treatment Efficacy



Al for Personalized Predictions of Future New Lesion
Counts on and off Treatments from Images

Clinical Data
(e.g. demographics)

Y
Baseline =
Multimodal MRI m,:;e:::::a s
— nr:;e:ni(e;?;:ts) 2 New Lesions
Al Model S gy [ v
— ('I'r:’a:::::;a 0 New Lesions
—f 7::::;2;‘ 4 New Lesions

System provides estimates of *all* treatment outcomes: factual and counterfactual
(regardless of the true assignment)
NE: No proven efficacy, LE: Lesser efficacy , ME: Moderate efficacy, HE: High efficacy

/ Durso-Finley et. al, Conference on Medical Imaging with Deep Learning (MIDL) 2022



Factual Model Results-Binarized Regression

Baseline 1:

Clinical features (Age, Sex, Baseline
Disability)

Clinical Data

/

Y YV VY

MLP
(NE)

MLP
(LE)

MLP
(ME)

MLP
(HE)

MLP
(Placebo)

Prediction
(NE)

Prediction
(LE)

Prediction
(ME)

Prediction
(HE)
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m Clinical Information Only

Mean Average Precision
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m Clinicaland MRI Features

NE: No proven efficacy, LE: Lesser efficacy , ME: Moderate efficacy, HE: High efficacy

Clinicaland FullMR



Factual Model Results-Binarized Regression

(Age, Sex, Baseline Disability)
+ (T2 Lesion Volume,
Gad lesion count)

0.8
MLP 0.
(NE)
MLP
(LE)
MLP
(ME)
MLP
(HE)

MLP > Prediction
(Placebo) ,_ | (Placebo) |

Prediction

433

Clinical Data ?—

Manual MRI
Segmentation Features

() U" (J

Baseline
MRI

Y YVVY
|

Placebo

B Clinical iInformationOnly M Clinical and MRI Features |

Mean Average Precision

NE: No proven efficacy, LE: Lesser efficacy , ME: Moderate efficacy, HE: High efficacy
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Factual Model Results-Binarized Regression

Our Model:
Clinical (Age, Sex, Baseline Disability) Mean Average Precision
+ Deep MRI Encoder 1 =
0.95 S
0.9 = .
.85 | S
Clinical D a V ' ' I I
inical Data 0.75 o4 : =
Baseline MLP ! Prediction o | [] v | I
MRI+Lesion Masks (NE) (NE) 0.65 | i i
it 0.6 | f i
MLP Prediction
 / w ™ e 55 I | [] . [ U I
Deep MLP Hyp | Prediction 05 . -— -
Encoder ) ) Placebo NE LE ME HE
MLP _’ Prediction
(HE) (HE) m Clinical Information Only  m Clinical and MRI Features  m Clinical and Full MRI
MLP Prediction
(Placebo) TT™|  (Placebo)

NE: No proven efficacy, LE: Lesser efficacy , ME: Moderate efficacy, HE: High efficacy



Deep Learning for Clinical Decision Support
(Part 1)

Factual and Counterfactual Treatment Outcome Estimates

Patient A Patient B
20.0 10
-~ MEDA T2 Threshold ~==- MEDA T2 Threshold
17.5 4 Factual Outcome Factual Outcome
 Estimated Outcomes ¢ Estimated Outcomes
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Placebo NE LE ME HE Placebo NE LE ME HE
Treatment Treatment

NE: No proven efficacy, LE: Lesser efficacy , ME: Moderate efficacy, HE: High efficacy
MEDA T2 threshold: >=3 NE lesions actionable number for DMT (therapy) escalation

/ Durso-Finley et. al, Conference on Medical Imaging with Deep Learning (MIDL) 2022



Deep Learning for Clinical Decision Support
(Part 2)

Predicting Future Treatment Effects

Clinical Data

(e.g. demographics)
Predicted Future Predicted Future
l Disease Severity Treatment Efficacy
Baseline
Multimodal MRI - ?_. Treatment A _
_— [ e |
Hes . — ? d
—[ e [ — |

Causal effects of treatment on the outcome for a patient

/ Durso-Finley et. al, Conference on Medical Imaging with Deep Learning (MIDL) 2022



Estimating Future Personalized Treatment
Response

Patient A
20.0
-=- MEDA T2 Threshold
17.5 4 Factual Outcome
® Estimated Outcomes
o 15.0 1
8 s ’\ Predicted Future Individual
—_ |Treatment Response
g = Reduction in future new
& + lesion count relative to placebo
] [— (no treatment)
. | . S
Placebo NE LE ME HE

NE: No proven efficacy, LE: Lesser efficacy , ME: Moderate efficacy, HE: High efficacy
MEDA T2: 3 Future New T2 Lesions

/ Durso-Finley et. al, Conference on Medical Imaging with Deep Learning (MIDL) 2022



Great! Are we ready for
clinical deployment?



Trustworthy Image-Based Personalized
Medicine

- Uncertainty Estimation




Trustworthy Image-Based Personalized Medicine

Al makes mistakes! High risk in handing over to clinician

| hope the
model is
confident
in this
choice

Patient will be a future
responder to Treatment A

What if we could quantify reliability of predictions
made in form of uncertainty?



Trustworthy Treatment Effect Estimation

Clinical Data

(e.g. demographics)

Distribution of New Lesions Distribution of Individual
Treatment Effects

Al Model

Uncertainty quantification helps
provide model trustworthiness

- - 0.0 T T r—tr T
6 8 10 =100 -7.5 =50 =25 00 25 50
Predicted New Lesions Individual Treatment Effect

/

Durso-Finley et. al, In submission, 2023



Trustworthy Image-Based Personalized
Medicine

- Explainability




Trustworthy Image-Based Personalized
Medicine

| can't tell how
the model

decided this.

| can't trust it.

Patient will be a future
responder to Treatment A




Explainable Deep Learning Models for Image Based
Personalized Medicine — Opening up the black box

Future responder to
treatment A

| can't tell what
led to
this conclusion

\ ,‘l

Grad-CAM

—-0.00

Where was the model looking at
when it made its prediction?

What are the patient specific image markers that are predictive of future response?

/

Kumar et. al, MIABID Workshop, MICCAI 2022



Explainability via Counterfactual Synthesis

Baseline Year 1

Real 'Image Future FLAIR image

How would the patient's current (baseline) image change were it to have a
different future disease outcome?

/

Kumar et. al, MIABID Workshop, MICCAI 2022



Explainability via Counterfactual Synthesis

Baseline Year 1

Realrlmage Future FLAIR image

Future FLAIR image

/

Kumar et. al, MIABID Workshop, MICCAI 2022



Explainability via Counterfactual Synthesis

Baseline Year 1

Generative
Al Model

o Future FLAIR image
Counterfactual [CF] 9

/

Kumar et. al, MIABID Workshop, MICCAI 2022



Explainability via Counterfactual Synthesis

Identification of Personalized Image Markers Predictive of Future Patient
Outcomes

Real Image Counterfactual [CF] Difference (Real - CF) Future FLAIR |mage

/ Kumar et. al, MIABID Workshop, MICCAI 2022



Counterfactual Synthesis Model

® Goal: CF image should maintain (i) subject fidelity, (ii) target class, (iii) realism

Input Image(3D)

Target Label

Yt

/ Real Active Samples

Generator Losses

Generator

Loss
Reconstruction
| Active (1)
SRsIGE / Inactive (0)
Discriminator Real(1) / Fake(0)
Real Inactive Samples Bold dashed lines indicate back-propagation of different losses

Kumar et. al, MICCAI 2022 MIABID Workshop



Counterfactual Synthesis Model

@nerator Losses \

Subject Fidelity
Loss
Reconstruction
Gengrator
| | o | Active (1)
Classifier | :
Input Image(3D) | Vi \ / Inactive (0)
Target Label :

‘?/ e
AT

Counterfactual

Discriminator Real(1) / Fake(0)
/ Real Active Samples Real Inactive Samples Bold dashed lines indicate back-propagation of different losses

Kumar et. al, MICCAI 2022 MIABID Workshop



Counterfactual Synthesis Model

Generator Losses

Reconstruction

Generator

Input Image(3D) | Yt

Target Label

/ Real Active Samples Real Inactive Samples

-

Loss

Classifier

Kumar et. al, MICCAI 2022 MIABID Workshop

Discriminator

Target Class

Active (1)
/ Inactive (0)

Real(1) / Fake(0)

Bold dashed lines indicate back-propagation of different losses



Counterfactual Synthesis Model

Generator Losses

Loss
Reconstruction
Generator
| | o | Active (1)
Classifier | :
Input Image(3D) | Vi \ / Inactive (0)
Target Label
Discriminator Real(1) / Fake(0) | Realistic
/ Real Active Samples Real Inactive Samples Bold dashed lines indicate back-propagation of different losses

Kumar et. al, MICCAI 2022 MIABID Workshop



Medicine

- Improving fairness



Trustworthy Image-Based Personalized Medicine

Biases in DL models across population subgroups

Does this Al
model work well
for all population
subgroups?

Patient will
have new
lesions in
the future

Mehta et. al, MIDL 2023
/ Shui et. al, NeurlPS 2022
Shui et. al, In submission.



Mitigating Bias in Al Model Predictions

0.65 -
I Al Model "
‘ S 0.60 4

F1S

0.55 A

0.50 A

0.45 A

0.40 -

/ Mehta et. al, MIDL 2023



Mitigating Bias in Al Model Predictions

0.75

0.70

0.65
Al Model "

/ Mehta et. al, MIDL 2023




Mitigating Bias in Al Model Predictions

0.80
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/ Mehta et. al, MIDL 2023



Mitigating Bias in Al Model Predictions

0.80

|

Fairness Gap

|
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0.40 -
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/ Mehta et. al, MIDL 2023



Mitigating Bias in Al Model Predictions

|

Fairness Gap

|

0.65
I Al Model "

old

Al method reduces fairness
gap by 28%

/ Mehta et. al, MIDL 2023



The Promise of Al for Clinical Decision Support

Provide clinicians with trustworthy Al tools to predict future individual treatment response on
different treatments using medical images

Patlent‘s Clinical Data

CDSS (Al techniques)
healthcare/patient
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https://www.mdpi.com/2072-6694/12/2/369



Thank you for your attention!

Probabilistic Vision Group Sponsors
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Mitigating Bias in Al Model Predictions

Reliability Curve: With Bias Reliability Curve: Mitigated Bias
1.0 [——— overall e 1.0 —aa Overall
—— Age <50 /,/ —— Age < 50 //’/
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2 2
S 0.6 8. 0.6
5 S
504 S04
ks] ]
£ o >

02 [N 02 ///’

0.0 00 -

0.0 0.2 0.4 0.6 0.8 1.0

Mean predicted probability 0.0 02 0.4 - —

Mean predicted probability

Shui et. al, In submission.
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Counterfactual Synthesis

Generator losses

Correct target class £e(G, £) = BOELF(G (s 9))s el

Lyoz+(G) = MSE[x, G(x, 1)]

Subject Specificity Lyoz— (G) = MSE[x, G(x, 0)]

Generator G(-, *)
(RW0XhoXdo x (0,1}) — RW0XhoXdo

Frozen

| Y

G(x,1)
Active reconstruction
: 0.03

Classifie

Y l ] () s R®0Xhoxdo _, [0, 1)

Real active samples X

x ~ "Yy:1

ﬁ 0.58

Inactive counter?actual _l
Discriminator

D(-) : R®0XhoXdo [0, 1)

[ Convolution
[ InstanceNorm
[ LeakyRelU
Modulation
[ Dropout
[—"] MaxPooling

Upsampling
Encoder Blocks

Decoder Blocks

= DVt

.:' L4_ (G, D) = BCE[D(G(x, 0)), o]‘)

e e e <

| Lg4 (D) = BCE[D(xy—g),1] !

Discriminator losses

Sampled from real inactive
distribution

f(.) : binary future lesion activity
classifier

G(., .): Conditioned Generative
module

D(., .): Discriminator




Trustworthy Treatment Effect Estimation

|
Factual Lesion Regression 4.0 —
—— Laquinimod Mean Outcome
1.0 | g —_———Y=2
£ 35+
I~
3
Gl g 301
‘@
o 3
2 E=
e
5 0.6 - =
] 2
3 3
3 5
S 0.4 3
[ =
= ~—— Placebo E
—— Laquinimod g
0.2 4 — Interferon beta-1a IM o
— Interferon beta-1a SC g
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0.0 5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
T T T T T T .
50 60 70 80 % 100 (#eanPolicy)

Percent of Patients Kept Based on Uncertainty Filtering Probability of Favorable Outcome

Uncertainty quantification helps
provide model trustworthiness

/.

Durso-Finley et. al, In submission, 2023



