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Objectives

The overall research goal here is to develop a fundamental theoretical
understanding of modern machine-learning architectures through the
lens of information concepts and quantities.

Main goals:
I Improvement of existing algorithms and approaches: we must

ensure ML algorithms do not take on and amplify our biases present in
the datasets, systems that pursue long-term goals, understanding
generalization and beyond the training distribution, non-stationarities,...

I Explainability and intrinsic reliability: knowing how an AI system
arrives at an outcome is key to trust, designing predictors that can
provide meaningful, calibrated notions of their uncertainty, that can
explain their decisions...

I Safety and application related reliability: we need to ensure the
security and reliability of AI systems, exposing and fixing their
vulnerabilities, identifying new attacks and defense, developing new
metric to evaluate robustness...
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Generalization beyond the Training Distribution

Model complexity

E
rr

or

Train data

Test data

Gap

A better understanding of the
information-theoretic principles
of generalization beyond the
training distribution (i.e., the
observed distribution changes)
may be fundamentally impor-
tant to predict the uncertainty
of an AI system and to know
how it arrives at an outcome

How to control generalization?

Regularization term: A weight penalty is included in the cost function;

Noise injection: The generalization ability is improved adding noise;

Implicit regularization: Deep learning algorithms reduce the
generalization gap naturally.
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Main Definitions

Definition (Classification rule and misclassification probability)

Let QŶ |X be a classifier, the misclassification probability is defined by:

PE(QŶ |X ) = 1−
∑
∀ (x ,y)

QŶ |X (y |x)PXY (x , y)

Definition (Randomized encoders and decoders)

The classifier can be divided into that of finding an encoder QU|X ∈ FE

(representation model) and a soft decoder QŶ |U ∈ FD simultaneously:

QŶ |X (y |x) = EqU|X

[
QŶ |U(y |U)|X = x

]
,

Definition (Cross-entropy risk)

L(Q) = EPXYQU|X

[
− logQŶ |U(Y |U)

]
, Q ≡

(
QU|X ,QŶ |U

)
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QŶ |X (y |x) = EqU|X

[
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Main Definitions (Cont’d.)

Definition (Empirical risk)

Let P̂XY denote the empirical distribution over the random training set
Sn = {(X1,Y1) · · · (Xn,Yn)}. The empirical risk is defined by:

Lemp(Q,Sn) = EP̂XYQU|X

[
− logQŶ |U(Y |U)

]

Lemma (Optimality of empirical decoders)

Lemp(QU|X ,QŶ |U ,Sn) ≥ Lemp(QU|X , Q̂Y |U ,Sn) a.e.,

where Q̂Y |U(y |u) =
∑

x∈X QU|X (u|x)P̂XY (x ,y)∑
x∈X QU|X (u|x)P̂X (x)

Definition (Generalization Gap)

Egap(Q,Sn) = |L(Q)− Lemp(Q,Sn)|
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Information Theoretic Bounds on the Gap

Gap bounds: The goal is to find the learning rate εn satisfying

P (Egap(Q,Sn) > εn(Q,Sn, γn)) ≤ γn

PAC style bounds: Compute the sample dependent εn such that

P
(
L(Q) ≤ Lemp

(
Q,Sn

)
+ εn(Q,Sn, γn)

)
≥ 1− γn

Regularized risk: We study properties and implications for related
algorithms that minimize:

Lemp

(
Q,Sn

)
+ λ · εn(Q,Sn, γn), λ ≥ 0
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Information-Theoretic Bound

Theorem

For each QU|X ∈ FE and QŶ |U ∈ FD ,

Egap(Q,Sn) ≤ inf
K∈N

2ε(K ) + Aδ

√
I(pX ; qU|X ) · log(n)√

n
r(K )

+
Dδ · DHL

(
QD

Y |U‖QŶ |U |q
D
U

)
+ Cδ

√
n

+O
(

log(n)

n

)
,

with probability at least 1− δ over the choice of Sn ∼ Pn
XY .

DHL is the Hellinger distance

DHL

(
QD

Y |U‖QŶ |U |q
D
U

)
=

√√√√√1

2
· EqDU

∑
y∈Y

(√
QŶ |U(y |U)−

√
QD

Y |U(y |U)
)2

.
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Information-Theoretic Bound (Cont’d.)

constants are defined as

Aδ :=
√

2Bδ,

Bδ :=
(

1 +
√

log
( |Y|+4

δ

))
,

Cδ := 2Vol (U) e−1 + Bδ
√
|Y| log

(
Vol(U)
PY (ymin)

)
,

Dδ = Q
−1/4

Ŷ |U
(ymin|umin)

√
8 |Y|+4

δ ; and

ε(K ) = sup
k,x ,y :

1≤k≤K
y∈Y

x∈K(y)
k

∣∣∣`(x , y)− `(x (k,y), y)
∣∣∣ , r(K ) =

1

min
k,y :

1≤k≤K
y∈Y

∫
K(y)

k

pX (x)dx
.

(
{K(y)

k }
K
k=1, {x (k,y)}Kk=1

)
y∈Y

are |Y| partitions of X with resp.

centroids, s.t. for each y ∈ Y:
⋃K

k=1K
(y)
k = X , K(y)

i ∩ K
(y)
j = ∅

∀1 ≤ i < j ≤ K ; qDU (u) and QD
Y |U(y |u) are distributions functions

induced by the quantization of pXY (x , y) by these partitions.
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Information-Theoretic Bound (Cont’d.)

Encoder and decoder are given but the bound can be further averaged
w.r.t randomness of the training samples and the algorithm itself.

I(pX ; qU|X ): Mutual information between raw data X and its
representation U is a measure of information complexity.

DHL

(
QD

Y |U‖QŶ |U

)
: Hellinger distance is a measure of the decoder

efficiency w.r.t. the decoder QD
Y |U , induced by qU|X and the

quantized testing distribution. QŶ |U = QD
Y |U makes this term zero.

ε(K ) and r(K ): These functions define, for y ∈ Y, an artificial
discretization of X into cells. While ε(K ) is associated with the
robustness of the loss over the partition element, r(K ) is the
minimum probability of falling into a cell.

Tradeoff: ε(K ) is a decreasing function (when the number of cells is
increased), r(K ) is increasing (smaller cells enclose less probability).

Vol(U): If ReLU activations are implemented (the volume is limited
for bounded entries), Vol(U) will be larger than for the case of
sigmoid activations, and the mutual information.
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Experimental Framework

Goal

Our experiments show a relationship between Egap(Q,Sn) and√
I(P̂X ;QU|X ), which potentially implies that the gap is characterized

from training samples.

Technical details

Training data set: 5K MNIST and 5K CIFAR-10;

Early stopping in the misclassification error according a random
selection of the validation set composed of 500 samples;

3-layer feed-forward with based on Gaussian and Log-Normal
Variational Auto-Encoders (VAEs);

Random translations are drawn from an uniform distribution between
−5 and 5 (quantized) for each axis and random rotations are drawn
from an uniform distribution (−π

4 ,
π
4 ) for the angle;

Experiments are repeated several times and then averaged.
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Comparison on MNIST: Egap vs MI variational bound
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(b)

Comparison between 0.95-quantile of Egap and the mutual information
upper bound for normal encoder and testing with: (a) Images generated
from training distribution, (b) Images generated with other distribution.
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(b)

Comparison between 0.95-quantile of Egap and the mutual information
variational bound for Log-Normal encoder and testing with: (a) Images
generated from training distribution, (b) Images generated with other
distribution.
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Comparison on MNIST: Egap vs MI variational bound
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(b)

Comparison between 0.95-quantile of Egap and the mutual information
variational bound for RBM encoder and testing with: (a) Images generated
with the training distribution, (b) Images generated with other distribution.
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Comparison on CIFAR-10: Egap vs MI variational bound
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(c)

Comparison between 0.95-quantile of Egap and the mutual information
variational bound for CIFAR-10 dataset and: (a) Normal encoder, (b)
LogNormal encoder, (c) RBM encoder.
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Summary and Open Problems

We presented a theoretical investigation of a typical classification task
in which we have training data from a source domain, but we wish
the testing gap measured w.r.t. a possible different probability law to
be as small as possible.

Our main result is that this gap can be bounded by the mutual
information between the input testing samples and the corresponding
representations and the Hellinger distance which measures the
decoder efficiency and other less relevant constants.

Empirical study suggests that the mutual information may be a good
measure to capture the dynamic of the gap with respect to important
training parameters.

Further work is needed to provide strong support to these numerical
results in presence of other sources of non-stationarities between
training and testing datasets.
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On-going Work and Perspectives

Learning the dynamic of information measures on high-dimensional
data, i.e., differential entropy, KL divergence and MI, based on
variational bounds on information measures and gradient descent over
neural networks.

Statistical confidence bounds for the parametric estimation of those
information measures have been recently derived for the case of MI
and entropies with at least one discrete variable.

These tools may have a major impact in various problems:
I Maximizing entropy of generative models, e.g., increasing diversity of

generative models,
I Simple methods for detecting dataset shift, measuring uncertainty,

explaining decisions,
I Investigating dependences in various problems, e.g., to study causal

effects in networks,
I Learning disentangled representations, e.g., improving unsupervised

methods,
I ...
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Learning the Dynamic of Mutual Information

We study the simple case of two multivariate correlated gaussians
random variables X ,Z ∈ Rn, where:[

X
Z

]
∼ N

(
0,

[
In ρIn
ρIn In

])
With ρ controlling the amount of correlation.

We train the bounds from scratch for 30 values of ρ equally spaced in
[−0.95, 0.95] where the differential mutual information is given by:

I(X ;Z ) = H(X ) +H(Z )−H(X ,Z )

=
1

2
log((2πe)n) +

1

2
log(2πe)n)− 1

2
log((2πe)2n|Σ|).
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Learning the Dynamic of Mutual Information (Cont’d.)

Plots for MI I(X ;Z), for X ,Z ∈ R20. Left: Estimated value Î(X ;Z). Right:

Estimated gradient ∇ρÎ(X ;Z) From Top to Bottom: MINE and NWJ. Results are

averaged over 10 seeds, and shadowed areas represent 95% of confidence.
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Learning the Dynamic of Mutual Information (Cont’d.)

Plots for MI I(X ;Z), for X ,Z ∈ R20. Left: Estimated value Î(X ;Z). Right:

Estimated gradient ∇ρÎ(X ;Z) From Top to Bottom: NCE and VBM (novel). Results

are averaged over 10 seeds, and shadowed areas represent 95% of confidence.
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GAN experiments

Target GAN

GAN + NWJ GAN + MINE GAN + VBM

View of 2500 generated samples after 400 epochs of training on the same randomly

chosen seed.
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GAN experiments (Cont’d.)

Target distribution GAN

GAN + NWJ GAN + MINE GAN + VBM

View of 2500 generated samples after 400 epochs of training on the same randomly

chosen seed.
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GAN experiments (Cont’d.)

Stacked4 MNIST: Left: VBM. Out of the 4 channels, we only plot 3 channels in oder to

keep clear RGB images.Right: MINE.

Stacked4 MNIST
Method Modes (Max 10000) KL

DCGAN 222.25 ± 85 5.49 ± 2.5e−1

DCGAN+MINE 5182 ± 4042 2.23 ± 2.33
DCGAN+VBM (α ≈ 1) 8858 ± 50 0.29 ± 1.0e−2

DCGAN+VBM (α = 1.8) 8872 ± 61 0.29 ± 1.4e−2

Results on stacked4 MNIST dataset, averaged over 10 randomly chosen seeds.
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Thank you for your attention !

https://arxiv.org/abs/1905.11972
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