

Safe-by-design development method for AI-based systems

DATAIA days on Safety & AI 2019

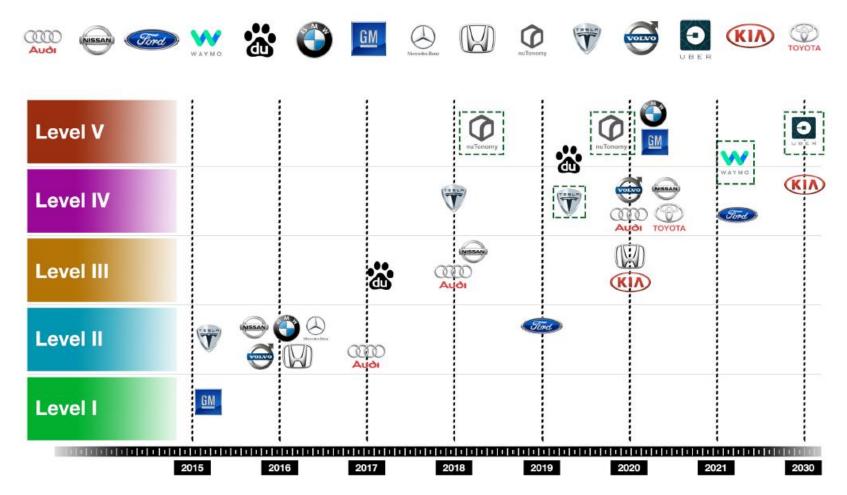
* presented at SEKE 2019 conference, July 2019

Gabriel Pedroza, Morayo Adedjouma

Institut CEA LIST Département Ingénierie Logiciels et Systèmes Laboratoire d'ingénierie d'Exigences et Conformité des Systèmes (LECS)

- Context and problem/stakes
- Proposed approach
 - Al-based reference architecture
 - Development method for AI-based systems
 - Integration of safety concerns
- Evaluation on case study & findings
- Conclusions and perspectives

• Autonomy levels I to V as defined in SAE J3016



Favarò FM, Nader N, Eurich SO, Tripp M, Varadaraju N (2017) « *Examining accident reports involving autonomous vehicles in California* ». PLOS ONE 12(9): e0184952.

ACCIDENTS ANALYSIS

Summary of accidents and comparison between AV and conventional vehicle performance

Table 2. Google's fleet breakdown and accident frequencies.

Type of Vehicle	Total Number of Vehicles	Percentage of Fleet	Percentage of Total Reported Accidents	Total Miles Travelled	Accident Frequency	Miles per Accident
Google Prototype	37	61.7%	46%	403,226	2.4e-5	40,322
Retrofitted Lexus	23	38.3%	54%	649,841	1.8e-5	54,153

https://doi.org/10.1371/journal.pone.0184952.t002

Table 3. Accident frequencies by reporters/make		No more than 3 people				
Type of Vehicle Total nur		killed in accidents		nt Frequency	Miles per Accident	
Nissan (Nissan and GM Cruise)		invol	ving full AV(1)		2.8e-4	3,576
Delphi/Audi					5e-5	19,787
Chevrolet (GM Cruise)		1	8,447		1.2e-4	8,447
Google Prototype		10	403,226		2.4e-5	40,322
Retrofitted Lexus		12	649,841		1.8e-5	54,153

https://doi.org/10.1371/journal.pone.0184952.t003

Table 4. Comparison of estimated accident frequencies for AV vs. conventional vehicles. Estimate for conventional vehicles is based on [19, 20] which provide updated data until the end of 2015. Data for 2016 and 2017 is still being process by FHWA and NHTSA.

Type of Vehicle	Total number of Accidents	Total Miles Travelled	Accident Frequency	Miles per Accident
AV	26	1,088,453	2.38e-5	42,017
Conventional	6,296,000	3.148 trillions	2.0e-6	500,000

https://doi.org/10.1371/journal.pone.0184952.t004

(1) https://www.quora.com/How-many-people-have-died-in-self-driving-cars

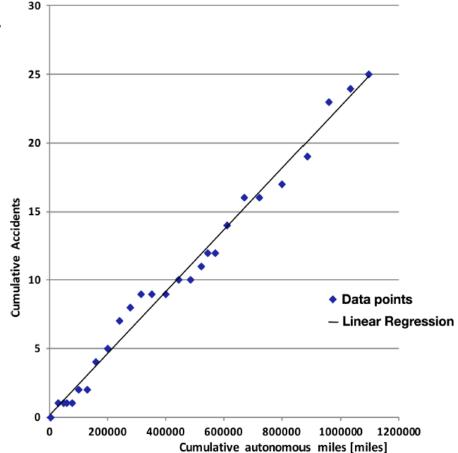
MAIN STAKES OF AI-BASED TECHNOLOGY

Cumulative accidents vs. cumulative miles →

list

Clatech

- Need to measure AV performance vs. conventional vehicle performance
- Need to evaluate vehicle safety:
 - ASIL levels defined in ISO 26262 do not suffice anymore:
 - Severity
 - Likelihood
 - Controllability
 - Autonomy relies upon AI and DL modules:
 - Evaluation of malfunctioning likelihoods
 - Increasing smartness of self-control w.r.t. AI/DL limits



Favarò FM, Nader N, Eurich SO, Tripp M, Varadaraju N (2017) « *Examining accident reports involving autonomous vehicles in California* ». PLOS ONE 12(9): e0184952.

MAIN STAKES OF AI-BASED TECHNOLOGY

• To increase AI-based systems safety, one must consider:

- Limits of AI-based systems:
 - detection capabilities (<90% in average),
 - algorithms to face unforeseen situational scenarios
- Ensure negligible likelihoods:
 - critical hazards
 - malfunctioning
- Conventional development methods at stake:
 - Phases, sequencing are almost static
 - Status development methods for AI-based systems: experimental phase
 - Engineering phases and their order may vary:
 - dependency engineering process $\leftarrow \rightarrow AI$ technology:
 - Knowledge bases maturity
 - Knowledge bases representativeness: data sets, events, phenomena

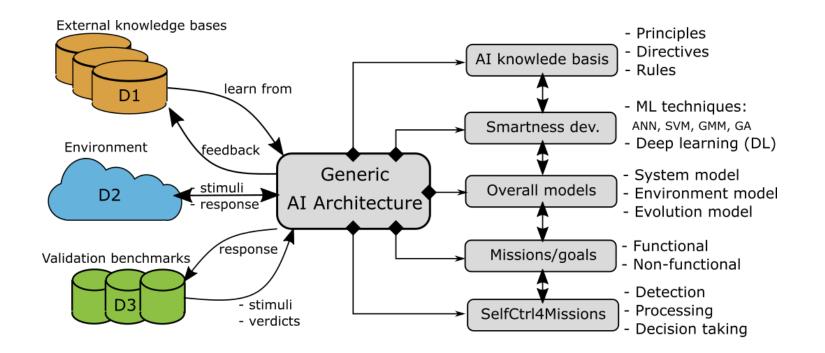
MAIN STAKES OF AI-BASED TECHNOLOGY

- To increase Al-based systems safety, one must consider
 - New standards for certification of AI-based systems:

- "ISO/IEC WD 23053: Framework for Artificial Intelligence (AI) Systems Using Machine Learning (ML)" →
 - In progress
- "ISO/PAS 21448:2019: Road vehicles -- Safety of the intended functionality" →
 - Limited to certain levels of autonomy: I and II
 - Oriented to one application domain: automotive

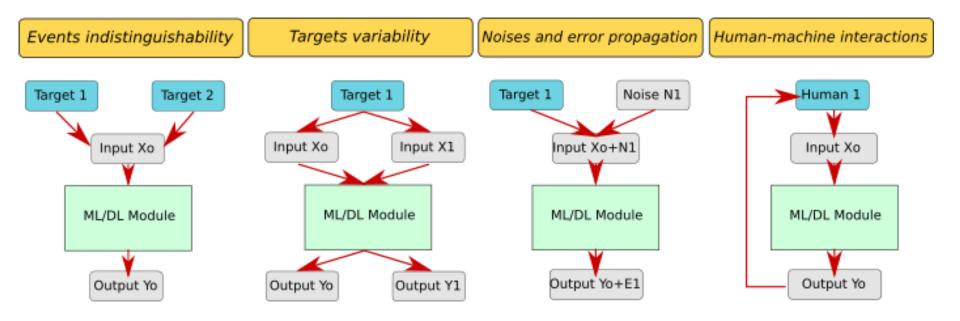
List REFERENCE AI-BASED ARCHITECTURE

- Key points:
 - Engineering process dependent on AI technology
 - Engineering process dependent on knowledge bases
 - Knowledge bases maturity completeness, representativeness, etc.



• Mostly related to AI technology limits

- Indistinguishability of events
- Variability of targets to be detected
- Background noises and error propagations
- Human machine interactions: driver take over machine



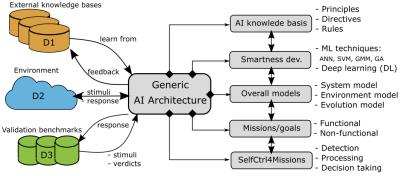
METHOD FOR AI SYSTEMS DESIGN

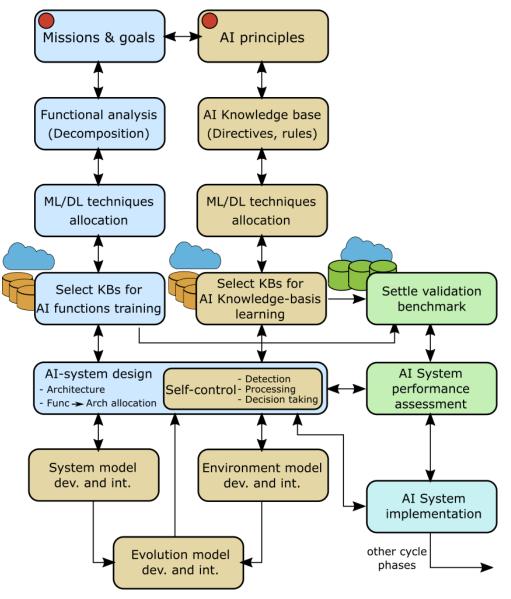
• Main features:

list

Ceatech

- Traditional cycle (blue)
- Al-layers development (brown)
- Al-modules validation (green)
- Help to develop and detail the generic architecture





universite

10

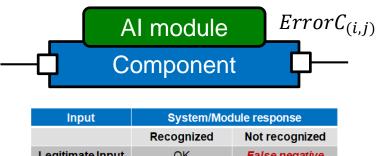
CEA LIST

list ^{Ceatech}

METHOD FOR SAFE-BY-DESIGN AI SYSTEMS

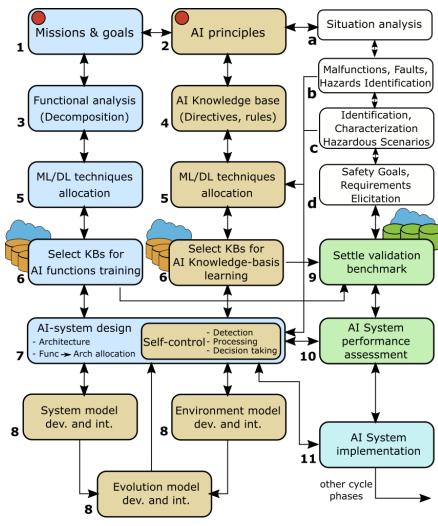
- Integration of safety:
 - Situation analysis

• Malfunctions, faults, hazards identification



	Recognized	Not recognized
Legitimate Input	OK	False negative
Improper Input	False positive	OK

- $$\begin{split} P[ErrorC_{(i,j)}] &:= P[FalsePos_{(i,j)}] + P[FalseNeg_{(i,j)}],\\ FalsePos_{(i,j)} &:= \cup_j \{C_i(Accept, B_j)\},\\ FalseNeg_{(i,j)} &:= \cup_j \{C_i(Reject, T_j)\}. \end{split}$$
 - Identification, characterization of hazardous scenarios *S*_k



• Safety goals elicitation:

list

ceatech

Scenario S_k associated to a *monitoring formula*, e.g. φ: safety distance between vehicles:

 $P[\phi < \theta] \le \delta.$

• The scenario S_k can be validated relying upon a validation test bench. The error is given by:

 $\{P[DisfC_{(i,j,t)}]\}$

• The scenario S_k can be simulated. However, for certain scenarios, this can be complex and costly. The error is also given by:

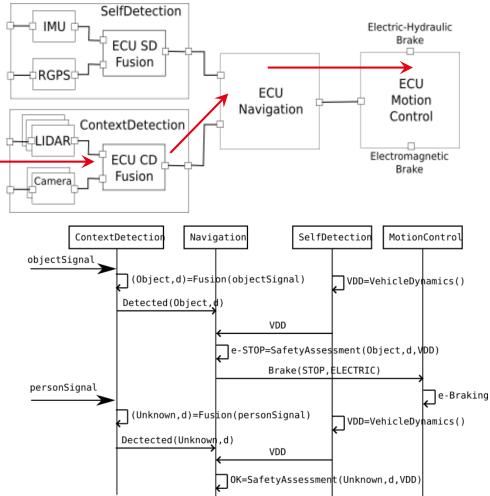
$$\{P[DisfC_{(i,j,t)}]\} \qquad ErrorC_{(i,j)}$$

$$P[DisfC_{(i,j,t)}] = \omega_1 P[FailC_{(i,t)}] + \omega_2 P[ErrorC_{(i,j)}],$$

$$\omega_1 + \omega_2 = 1.$$

$$FailC_{(i,t)} = \lambda_i e^{-\lambda_i t}$$

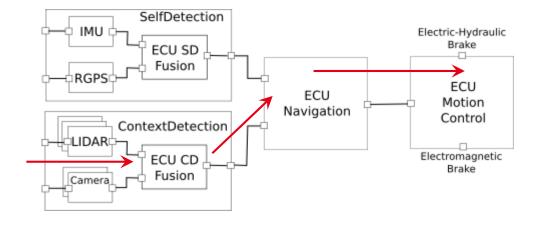
AV for public transportation



ВМСР

SHERPA

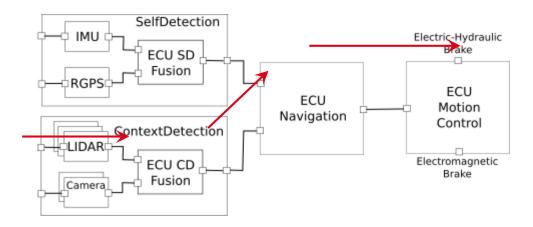
• Probability of hazardous scenario



 $P[S_k] := \lambda_{LIDAR} \lambda_{Camera} + P[DisfECU_{CD}] \\ + \lambda_{IMU} \lambda_{RGPS} + P[DisfECU_{SD}] \\ + P[DisfECU_{Navigation}] + \lambda_{MotionControl}.$

FINDINGS/LIMITATIONS

- Sources of uncertainty (case study):
 - Accuracy and maturity of KBs: impact the learning process and performance of ML/DL components
 - Difficulty to apprehend usage-scenarios: infinite possible environmentaloperational contexts
 - performance limits of AI-based components
 - Interpretation and decision-taking layers are at stake:
 - contradictory directives in critical scenarios
 - deploy new capabilities in real time



- Conclusions
 - Enhancement of typical hazard analysis method to infer safety goals
 - Malfunctioning likelihood of AI-systems = typical failure rate + error probability of ML/DL modules
 - Sources of uncertainty
- Perspectives
 - Larger-scale application of the method
 - Applicability of standard-preconceived methods: FMEA and FTA
 - Cover stages of the development cycle, i.e., testing and validation

Gabriel PEDROZA & Morayo Adedjouma, PhD Research Engineer

Institut CEA LIST

Département Ingénierie Logiciels et Systèmes Laboratoire d'ingénierie d'Exigences et Conformité des Systèmes (LECS) Gabriel.PEDROZA@cea.fr, Morayo. Adedjouma@cea.fr www-list.cea.fr

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019