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Anatomical Plausibility

« Anatomical structures follow regular
patterns

« Constrained space of solutions in terms
of shape, topology and location

« We say that a segmentation mask is anatomically plausible
if it lives in such constrained space.

Image source: https://www.wolfram.com/



https://www.wolfram.com/

Semantic segmentation 'in the wild’

VS

medical imaging segmentation

Tons of data, low regularity
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Anatomical Plausibility

Anatomical Lesion segmentation

segmentation




Anatomical plausibility in image segmentation

n W'
@‘ Yl e




Anatomical plausibility in image segmentation

Example of topological defects in the white matter surface extracted by FreeSurfer
Source: https://andysbrainbook.readthedocs.io/en/latest/FreeSurfer/FS_ShortCourse/FS_12_FailureModes.html



Why does it happen?
CNN limitations

CNN predictions have local support

CNNs are translation invariant

The loss term is usually defined at the pixel level

This makes it difficult to introduce global shape constraints




Can we take advantage of this high data regularity
to encourage anatomical plausibility via global shape
constraints?
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Anatomically Constrained Neural Networks

Idea: Learn an embedding which contains global information about shape
and topology

— (d1, d2, d3, ........ dn)




Learning embeddings of anatomical masks

Trained using segmentation masks (not image information)



Learning embeddings of anatomical masks

Trained using segmentation masks (not image information)



Denoising autoencoders

Encoder : f@ Jp :Decoder

Denoised
Image

Noisy
Image

Embedding: h = fg(Z)

Noisy Image / Mask

/
E.g: MSE Loss Function L(QL" 9) — (gg(fg (Q%)) — ZE)Q

Decoder Encoder Original Image / Mask




Measuring similarity at the local and global level

» Local loss: Cross entropy defined at the pixel level. ---> ﬁce

* Global loss: Euclidean distance between the embeddings

Lae = f(#(x);05) — f(3;04) I3



ACNN for image segmentation

Segmentation
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6—Entropy Loss Lx)

Source: Oktay, Ferrante, Kamnitsas et al (IEEE TMI, 2018)



ACNN for image segmentation

Step 1: Train the autoencoder
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ACNN for image segmentation

___________________________________________________________

___________

Segmentation
¢(.)
oLy,
Al
00,

ACNN-Segmentation Model

Gradients for Global Loss
. — Gradients for Pixel-Level Loss

___________________________________________________________

Cross entropy at the pixel level

A

Ly, = || f(¢(x);05) — f(y;05) ||

(L2 (003690 v { L.+ Zfwl})

)
o ] 1
13, Global loss
% ]
)
S
F =]
L
min
a
Vg \

Source: Oktay, Ferrante, Kamnitsas et al (IEEE TMI, 2018)



ACNN for image segmentation

Step 2: Use the embeddings to formulate the loss function

----------------------------------------------------------------------

Segmentation
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: =
ACNN-Segmentation Model
Gradients for Global Loss
. = Gradients for Pixel-Level Loss

----------------------------------------------------------------------

Source: Oktay, Ferrante, Kamnitsas et al (IEEE TMI, 2018)



ACNN for image segmentation

MR Segmentation

US Segmentation

Image UNet ACNN GT



ACNN for image segmentation

Endocardium Myocardium Capacity

Mean Hausdorff Dice Mean Hausdorff Dice # Trainable

Dist. (mm) Dist. (mm) Score (%) Dist. (mm) Dist. (mm) Score (%) Parameters

2D-FCN [44] 2.07+0.61 11.374+7.15 .908+.021 1.584+0.44 9.19+7.22 1274.046 1.39 x 106

3D-Seg 1.7740.84 10.284+8.25 .923+.019 1.484+0.51 10.15410.58 773+.038 1.60 x 106

3D-UNet [12] 1.66+0.74 9.9449.22 .923+.019 1.4540.47 9.81+11.77 .7644.045 1.64 x 10°

AE-Seg [37] 1.75+0.58 8.42+3.64 .926+.019 1.51+0.29 8.52+2.72 7794+.033 1.68 x 10°

3D-Seg-MAug 1.59+0.74 8.5248.13 928+.019 1.3740.41 9.41+9.17 785+.041 1.60 x 106

AE-Seg-M 1.594+0.48 7.52+3.78 927+.017 1.324+0.26 7.124+2.79 .7914+.036 1.91 x 106

ACNN-Seg 1.37+0.42 7.89+3.83 939-+.017 1.14+0.22 7.314+3.59 8114.027 1.60 x 10°
p-values p < 0.001 p ~ 0.890 p < 0.001 p < 0.001 p~ 0.071 p < 0.001 -




Can we use ACNN to encourage anatomical plausibility in
Deformable Image Registration?

Image source: https://www.mathworks.com/matlabcentral/fileexchange/50702-fordanic-image-registration



https://www.mathworks.com/matlabcentral/fileexchange/50702-fordanic-image-registration
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Neural Networks

journal homepage: WWW.elsevier.com/locate/neunet

2020 Special Issue
Learning deformable registration of medical images with anatomical )
constraints San |

Lucas Mansilla, Diego H. Milone, Enzo Ferrante &
Research Institute for Signals, Systems and Computational Intelligence, sinc(i), FICH-UNL, CONICET, Santa Fe, Argentina

ARTICLE INFO

. ———

Article history: Deformable image registration isa fundamental problem in the field of medical image analysis. During
Available online 30 January 2020 the last years, We have witnessed the advent of deep learning-based image registration methods
// which achieve state-of-the-art performance, and drastically reduce the required computational time.
Medical ook However, little work has been done regarding how can we encourage our models to produce not

edical image registration . : et AL
Convolutional neural networks only accurate, but also anatomically plausible results, which 1s still an open question in the field. In
X-ray image analysis this work, we argue that incorporating anatomical priors in the form of global constraints into the
learning process of these models, will further improve their performance and boost the realism of the
warped images after registration. We learn global non-linear representations of image anatomy using
segmentation masks, and employ them to constraint the registration process. The proposed AC-RegNet
architecture is evaluated in the context of chest X-ray image registration using three different datasets,
where the high anatomical variability makes the task extremely challenging. Our experiments show
o g Saasamically constrained registration model produces more realistic and accurate

A A I % & he potential of this approach.
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Learning deformable image registration
with anatomical constraints
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Measuring similarity at the local and global level

Reference Anatomically Anatomically
Segmentation Plausible Modification Non Plausible Modifications
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Post-DAE: Autoencoders as a post processing step




Vi &
EMB W% &

Signal Processing Socrery

i% % |EEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020
(g »

Post-DAE: Anatomically Plausible Segmentation
via Post-Processing with Denoising
Autoencoders

Agostina J Larrazabal, César Martinez, Ben Glocker, Enzo Ferrante

Abstract— We introduce Post-DAE, a post-processing
method based on denoising autoencoders (DAE) to im-
prove the anatomical plausibility of arbitrary biomedical
image segmentation algorithms. Some of the most pop-
ular segmentation methods (e.g- based on convolutional
neural networks or random forest classifiers) incorporate
additional post-processing steps to ensure that the result-
ing masks fulfill expected connectivity constraints. These
methods operate under the hypothesis that contiguous
pixels with similar aspect should belong to the same class.
Even if valid in general, this assumption does not con-
sider more complex priors like topological restrictions or
convexity, which cannot be easily incorporated into these
methods. Post-DAE leverages the latest developments in
manifold learning via denoising autoencoders. First, we
B a Jedltre L linear embedding that represents

pipelines such as computer assisted diagnosis, morphometric
analysis for population studies and radiotherapy planning. The
correctness and anatomical plausibility of these results is thus
of paramount importance, since it will directly influence the
overall quality of subsequent analyses.

Convolutional neural networks (CNNs) proved to perform
biomedical image segmentation in a highly accurate way [1]-
[3]. CNNs constitute a particular type of neural network
specially suited for regularly structured data, like 2D or 3D
images, where hierarchical representations of the input are
learned using stacked convolutional layers. At every layer,
shared parameters (also referred as weights or kernel) are used
to learn new representations of the input image. This sharing
scheme reduces the number of parameters that should be learnt

T L mhanke to the

In Collaboration with

Imperial College
London



Autoencoders as a post-processing step

Post-DAE

Arbitrary

segmentation
method




Denoising autoencoders

Image from: Vincent et al, 2010 (JMLR)



Experiments: quantitative results

Random Forest UNet -5ep UNet - 10 ep UNet - 20 ep UNet - 250 ep
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Anatomical Priors for Image Segmentation
via Post-Processing with Denoising Autoencoders

MICCAI 2019

Visualization of segmentation masks before and after
post-processing using Post-DAE



Agostina Larrazabal

https://tinyurl.com/postdae-segmentation

Source code

& POST DAE.ipynb

Archivo Editar Ver Insertar Entorno de ejecuciéon Herramientas Ayuda No se guardaran los cambios

indice X

<> Post-DAE: Anatomically Plausible
Segmentationvia Post-Processing with
Denoising Autoencoders

Post-DAE for binary segmentation
Training a new model
Lung segmentation masks

Post-processing Random Forest
segmentations

Post processing initial RF predictions

Post-processing UNet
segmentations

Post-processing initial UNet
predictions

Use Post-DAE to post-process
segmentations from different datasets

Montgomery dataset: Post-
processing RF segmentations

Post-processing initial RF predictions
on Montgomery

Post-processing initial UNet
predictions on Montgomery

Comparing predictions

Seccién

+ Codigo + Texto 42 Copiar en Drive
CULLEDDLIULLY MULLiL WSUPY
o Installing collected packages: SimpleITK, medpy
Successfully installed SimpleITK-1.2.4 medpy-0.4.0

~ Post-DAE for binary segmentation

~ Training a new model

[ ] import binary tools as t

bz = 15
epochs = 150
1r=0.0001
nval=22
ntrain=174

saveDir = 'trained models/Binary DAE/Post_DAE_ new'
t.ensure_dir(saveDir)

VAL_IMAGE_DIR="Segmentations/JRST/Labels/Val/*.png"
TRAIN_IMAGE_DIR="Segmentations/JRST/Labels/Train/*.png"

x_val, y_val = t.generate validation_data(VAL_IMAGE_DIR,nval)
t.train_new_model (TRAIN_IMAGE DIR,saveDir,x_val,y val, ntrain,bz, epochs,lr)

Using TensorFlow backend.



https://tinyurl.com/postdae-segmentation

Denoising also helps during training
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Supervision by Denoising

Sean |. Young Adrian V. Dalca
Christopher A. Metzler -, Bruce Fischl

Enzo Ferrante Polina Golland ,

,and Juan Eugenio Iglesias

Abstract—-Learning-based image reconstruction models, such as those based on the U-Net, require a large set of |abeled images if
good generalization is to be guaranteed. In some imaging domains, however, labeled data with pixel- or voxel-level |label accuracy aré
scarce due 10 the cost of acquiring them. This problem is exacerbated further in domains like medical imaging, where there is no
single ground truth label, resulting in large amounts of repeat variability in the labels. Therefore, training reconstruction networks to
generalize petter by learning from both labeled and unlabeled examples (called semi-supervised learning) is problem of practical and
theoretical interest. However, traditional semi-supervised learning methods for image reconstruction often necessitate handcrafting @
differentiable regularizer specific t0 some given imaging problem, which can be extremely time-consuming. In this work, we propose
“gupervision by denoising” (SUD), a2 framework that enables us 10 supervise reconstruction models using their own denoised output
as soft labels. SUD unifies stochastic averaging and spatial denoising techniques under a spatio-temporal denoising framework and
alternates denoising and model weight update steps inan optimization framework for semi-supervision. As example applications, we
apply SUD to two problems arising from biomedical imaging—-anatomical brain reconstruction (8D) and cortical parcellation (2D)—to

demonstrate a significant improvement in the image reconstructions over supervised-only and stochastic averaging paselines.

Index Terms—semi-supervised learning, visual reconstruction, denoising, fully convolutional networks, proximal methods.
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Can we extend these ideas to landmark-based
segmentation?






Landmark based anatomical segmentation

Image Segmentation Landmarks
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Graph construction

Landmark Segmentation
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Hybrid GNet Architecture

I I
f enc f dec f eg'n.c f gec

— — - PCA
w Fully Connected VAE
e I n «  Graph Spectral VAE

SN |

eInc fgec Implemented via Chebyshev

spectral graph convolutions
(Defferrard et al, NeurIPS 2016)



Hybrid GNet Architecture

Convolutional Encoder

512x512x8
Input 512x512x1

32x32x64
256x256x16
128x128x32 64x64x64

Trained end-to-end with an MSE
loss on the nodes position

64 latents

MaxPooling MaxPooling Ma;;goﬁng =] Flatten
Conv Conv Conv Conv Conv

MaxPooling

Graph-convolutional decoder

16x166 16x166 16x166 16x166
16x166 = . -

16x166

64

Latents Reshape

=
A
PN
—

Spectral Spectral Spectral Spectral .
convolution convolution convolution convolution

Landmarks

Dense

Spectral
convolution
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Image to graph skip connections

(b) Predicted node Feature maps Intermediate graph
positions feature maps
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Image to graph skip connections

GAGGION et al: IMPROVING ANATOMICAL PLAUSIBILITY IN MEDICAL IMAGE SEGMENTATION VIA HYBRID GRAPH NEURAL NETWORKS 1

Improving anatomical plausibility in medical
Image segmentation via hybrid graph neural
networks: applications to chest x-ray analysis

Nicolas Gaggion, Lucas Mansilla, Candelaria Mosquera, Diego H. Milone and Enzo Ferrante

Abstract— Anatomical segmentation is a fundamental
task in medical image computing, generally tackled with
fully convolutional neural networks which produce dense
segmentation masks. These models are often trained with
loss functions such as cross-entropy or Dice, which as-
sume pixels to be independent of each other, thus ig-
noring topological errors and anatomical inconsistencies.
We address this limitation by moving from pixel-level to
graph representations, which allow to naturally incorpo-
rate anatomical constraints by construction. To this end,
we introduce HybridGNet, an encoder-decoder neural ar-
chitecture that leverages standard convolutions for image
feature encoding and graph convolutional neural networks

MM tn Aornnda nlarniecibhile ranraocontatinne nf anatam.

features from annotated datasets. Casting image segmentation
as a pixel labeling problem is desirable in scenarios where
topology and location do not tend to be preserved across
individuals, like lesion segmentation. However, organs and
anatomical structures usually present a characteristic topology
that tends to be regular. Since deep segmentation networks
are typically trained to minimize pixel-level loss functions,
such as cross-entropy or soft Dice [2], their predictions are
not guaranteed to reflect anatomical plausibility, due to the
inherent lack of sensitivity that these metrics have with respect
to global shape and topology [3] (i.e. many different shapes

IEEE TMI 2022



Experiment: Comparison with landmark-based baseline methods

Model MSE Dice Lungs HD Lungs Dice Heart HD Heart
PCA 340.024 (243.549) 0.945 (0.014) 17.445 (9.669) 0.906 (0.037) 14.602 (5.400)
FC 332.197 (242.379) 0.945 (0.017)  17.535 (10.352) 0.910 (0.038) 15.020 (5.785)
MultiAtlas 492.262 (298.138) 0.944 (0.013) 20.317 (9.344) 0.886 (0.056) 16.780 (6.839)
HybridGNet (without IGSC)  294.621 (274.497) 0.952 (0.013) 15.642 (10.922) 0.913 (0.038) 13.658 (5.548)
Layer 3 277.536 (298.725) 0.954 (0.014) 14.565 (11.441) 0.917 (0.037) 13.401 (5.376)
1 IGSC Layer 4 288.597 (272.538) 0.956 (0.013) 16.054 (11.284) 0.916 (0.038) 14.153 (6.038)
Layer 5 258.413 (245.724)  0.963 (0.010) 13.662 (11.107)  0.915 (0.039) 13.738 (5.181)
Layer 6 250.123 (232.032) 0.960 (0.011) 14.378 (9.262) 0.924 (0.030) 12.339 (4.844)
Layers 4 3 263 973 (262 700) O. 963 (0.011) 14. 942 (10. 589) 0.921 (0. 036) 13.198 (5 514)

Layers 6- 5 200 748 (211 080) 0. 974 (0.007) 12. 089 . 344) 0.933 (0.031) ‘ (5 581)



Experiment: Comparison with landmark-based baseline methods
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Experiment: Robustness to simulated image occlusion on dense
segmentation

UNet+PostDAE nnUNet

Example 2 Example 1

Example 3




Experiment: Robustness to image occlusion on dense segmentation

Dice Coefficient Hausdorff Distance
120 ,
0.95 - HybridGNet Dual
——— HybridGNet Dual SC
1001 —— UNet
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80 -
€
g 0.85 E 60
o o)
T
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0.80 A
—— HybridGNet Dual SC 20 4
0.75 - HybridGNet Dual
—— UNet 0 1
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Occlusion block size Occlusion block size

We compared the models evaluating the Dice coefficient and Hausdorff distance on the dense masks
obtained from the UNet and the convolutional decoder of the dual models.



Experiment: Robustness to real image occlusion on dense
segmentation

Example 2 Example 1

Example 3




Experiment: Assessing the impact of domain shift by age
distribution on lung segmentation

Montgomery (Test Set) Shenzhen (Test Set)
JSRT (Training Set) JSRT (Training Set)
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Extension to 3D

Extend HybridGNet to 3D meshes derived from volumetric images instead of 2D contours
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Under evaluation, 2023



MULTI-CENTER ANATOMICAL SEGMENTATION WITH HETEROGENEOUS LABELS VIA
LANDMARK-BASED MODELS

Nicolds Gaggion*

Maria Vakalopoulou!

Diego H. Milone* Enzo Ferrante*

* Research Institute for Signals, Systems and Comp. Intelligence, sinc(i), CONICET-UNL, Argentina
T MICS, CentraleSupélec, Université Paris-Saclay, Inria Saclay, France

ABSTRACT

Learning anatomical segmentation from heterogeneous labels
in multi-center datasets is a common situation encountered
in clinical scenarios, where certain anatomical structures are
only annotated in images coming from particular medical
centers, but not in the full database. Here we first show
how state-of-the-art pixel-level segmentation models fail
in naively learning this task due to domain memorization
issues and conflicting labels. We then propose to adopt
HybridGNet, a landmark-based segmentation model which
learns the available anatomical structures using graph-based
representations. By analyzing the latent space learned by
both models, we show that HybridGNet naturally learns
more domain-invariant feature representations, and provide
empirical evidence in the context of chest X-ray multiclass

coomentatinh We hane thece 1thciohte vi1ll ched lioht An the

section of multi-task learning, domain adaptation and weakly
supervised learning [7]. As we will show in this work, when
different organs are annotated in images coming from various
centers, commonly used pixel-level segmentation methods
like UNet and nnUNet trained with standard procedures tend
to associate certain labels to specific domains.

Several methods have been proposed to independently
address the problems of domain shift [5, 8, 9] and hetero-
geneous labels [10, 6, 11] in medical image segmentation.
As for the joint problem, Dorent and coworkers [7] pro-
posed a framework which combines a variational formulation
to cope with heterogeneous labels, with conventional tech-
niques based on data augmentation, adversarial learning, and
pseudo-healthy image generation to address domain shift.
In this work, we argue that landmark based segmentation
methods like the HybridGNet [12, 13] can naturally handle

% ®
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Multi-center anatomical segmentation with
heterogeneous labels via landmark-based models
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https://www.vectorportal.com/
https://creativecommons.org/licenses/by/4.0/

Problem: domain memorization
when training using multi-center data with heterogeneous labels

Original Image Ground Truth UNet nnUNet Desired output

* Naive pixel level
approaches tend to fail in
multicentric scenarios with
heterogeneous labels due
to domain memorization
issues

Montgomery (L)

Shenzhen (L)

« We propose to overcome

this approach with
landmark based models

Padchest (LH)

ISRT (LHC)




Qualitative results UNet and nnUNet suffer from domain memorization in the full setting

(e.g. the heart is not predicted in Montgomery and Shenzhen)

HybridGNet UNet nnUNet UNet HT
Input image Ground Truth Strict Full Strict Full Strict Full Strict Full

Montgomery (L)

Shenzhen (L)

Padchest (LH)
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HybridGNet presents anatomically plausible results for all

Qualitative results structures when trained in both settings

HybridGNet nnUNet UNet HT
Input image Ground Truth Strict Strict Strict Full Strict Full

-

Montgomery (L)

Shenzhen (L)

Padchest (LH)
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Why is this happening?

HybridGNet UMAP (same organ area)

9 i e Padchest
siX .. Shenzhen
8 e e et . JSRT

e Montgomery

- We performed dimensionality reduction on the ’
bottleneck latent space of HybridGNet and the UNets i

- UNet and UNet HT tend to :
clusterize images per

dataset, while HybridGNet Ry S
doesn’t, explaining the ° A
improved robustness to o ERNRLE 6
domain-label memorization. IR ate S

2 4 6 8 10

UNet HT UMAP (same organ area) UNet UMAP (same organ area)

2. Padchest ‘ ol = 3 Lo . e Padchest
Shenzhen .. . .°°' Shenzhen
L. JsRT g 2 % « JSRT
e Montgomery T %, e Montgomery

4 6 8 10 12 2 4 6 8 10



Multi-center anatomical segmentation with heterogeneous labels
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CheXmask: a large-scale dataset of anatomical segmentation
masks for multi-center chest x-ray images
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CheXmask: a large-scale dataset of anatomical segmentation
masks for multi-center chest x-ray images

Padchest
CANDID-PTX ChestX-ray8 CheXpert '\g%'%g)fn'?aJZSG 160,861 images VinDr-CXR
19,237 images 112,120 images 224,316 images ' 9 of over 67.000 18,000 PA images
] . of 65,379 patients . )
from New Zealand of 30,805 patients from the United States from the United States patients from Vietnam
between 2010-2020 from diverse sources between 2002-2017 from Spain between 2018-2020
between 2011-2016
between 2009-2017
Y Y Y Y Y Y
Inclusion criteria: Inclusion criteria: Inclusion criteria: Inclusion criteria: Inclusion criteria: Inclusion criteria:
Al images ’ "ViewPosition" is "Frontal/Lateral" is "ViewPosition" is "Projection" is All images )
g llPAII or IIAPII IlFrontalll IIPAII Or llAPll IIPAII Or llAPll g
A A A A A A
CANDID-PTX ChestX-ray8 CheXpert MIMIC-CXR-JPG Padchest VinDr-CXR
19,237 images 112,120 images 187,825 images 243,334 images 96,287 images 18,000 images

|

Joint Dataset:
676,803 frontal chest x-ray images
from 4 different countries upto 2020
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CheXmask

a large-scale dataset of anatomical segmentation
masks for multi-center chest x-ray images
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https://tinyurl.com/chexmask
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CheXmask: a \arge-sca\e dataset of anatom'\ca\
segmentat'\on masks for mu\t‘\-center chest x-ray

images

Nicolas Gagg'\on‘, Candelaria N\osqueraZ’ 3, Lucas N\ans'\\\a‘, Martina A‘mesederz, piego H-
Milone'; and Enzo Ferrante"*

1\nstitute for signals, Systems and Computat'\ona\ \ntelligence: sinc()) CON\CET—UNL, ganta Fe, 33002, Argentina
3Health \nformatics Department at Hospital \taliano de guenos Aires Buenos AIres CP, Argentind

3Un'\\/ers'\dad Tecnologica Naciona!, Buenos Aires, CP, Argentina

*correspond'\ng quthor: ENZO Ferrante (eterrante@s‘mc.un\.edu.ar)

ABSTRACT

m
pub\'\c\y available databases: CAND\D-PTX, ChestX—rayB, Chexpert, M\M\C-CXR-JPG, padchest, and \inDr-CXR, resulting
. o776 803 segmentat'\on masks. Our methodo\ogy utilizes the Hybr'\dGNet model 10 ensure consistent and h'\gh-qua\'\ty
1 Aatasels. Rigorous yalidation, including expert phys'\c'\an evaluation and automatic quality control,
IV T Aditionally, We prov'\de '\nd'\v'\dua\'\zed quality indices per mask and an overall
CrT A for the proader scientific community, stream\'\n'mg the
P ok dataset s pub\'\c\y available



& > C & github.com/ngaggion/HybridGNet

= README.md

HybridGNet: Hybrid graph convolutional neural networks

Nicolas Gaggion ) .
99 for landmark-based anatomical segmentation

Nicolas Gaggion’, Lucas Mansilla®, Diego Milone', Enzo Ferrante’

" Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad
Universitaria UNL, Santa Fe, Argentina.

Full-paper accepted at MICCAI 2021.
Pre-print available at https://arxiv.org/abs/2106.09832

Installation:

https://github.com/ngaggion/HybridGNet
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Bias in Al for medical image analysis

nature L

COMMENT - 18 JULY 2018

Al can be sexist and racist —it’stimeto
makeitfair

Computer scientists must identify sources of bias, de-bias training data and
develop artificial-intelligence algorithms that are robust to skews in the data,
argue James Zou and Londa Schiebinger.

James Zou™ & Londa Schiebinger

Login




Gender bias In Al systems

= Google Translate i G
SPANISH Mg ENGLISH

Ella es una investigadora. También escribe libros. X
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She is a researcher. He also writes books.




Racial bias in Al systems
Face recognition

Publicly available commercial face recognition online services provided by

Microsoft, Face+ +, and IBM respectively are found to suffer from achieving

AFRICA AVERAGE FACES EUROPE

| 1-
- x

much lower accuracy on females with darker skin color(see Fig4,
Buolamwini and Gebru, 2018).

RWANDA
AGNVINId

J —_— —
g = Classifier Metric All F M Darker Lighter | DFjJ DM LF LM
L
% lz’ PPV(%) 937 803 074 R7.1 99 3 2928 040 o3 1]
7} o MSFT Error Rate(%) 63 107 26 12.9 0.7 208y 6.0 1.7 0.0
O ¢ . TPR (%) 93.7 96.5 91.7 87.1 99.3 92.1) 83.7 100 98.7
FPR (%) 6.3 83 35 12.9 0.7 16.3] 7.9 1.3 0.0
3 3 ‘ g PPV(%) 000 787 003 kB 95 3 655 C qC
E ' 3 viv .I‘ 5 Faced-4 Error Ratp %) 10.0 213 0.7 16.5 4.7 34.50 0.7 6.0 0.8
; - = - - TPR (%) 90.0 989 85.1 83.5 95.3 98.8) 76.6 98.9 92.9
! FPR (%) 10.0 149 1.1 16.5 4.7 23.4) 1.2 sl 1.1,
=T —Trne e T PPV(%) 879 797 044 7126 96,8 6530 830 929 9907
IBM Error Rate(%) 12.1 203 5.6 22.4 3.2 34.7§ 120 7.1 0.3
TPR (%) 87.9 921 85.2 77.6 96.8 823 748 99.6 948
FPR (%) 121 148 7.9 224 3.2 25.23 17.7 520 04

Source: Buolamwini & Gebru, 2018. Conference on Fairness, Accountability and Transparency



Fairness of Al for medical image analysis

Deep learning models for medical image analysis can exhibit bias with respect to specific sub-populations

Publish with us v




Bias in deep segmentation networks

Ethnicity bias in cardiac segmentation

Chinese
-2
DSC (%) for Baseline —Fairness through unawaren ES'—W
ED ES g E
LVBP LVM RVBP LVBP LVM RVBP @ 2
Total 93.48 83.12 89.37 89.37 86.31 80.61 g % High
Male 93.58 83.51 88.82 90.68 85.31 81.00 ©
Female 93.39 82.71 89.90 89.59 86.60 80.21
White 97.33 93.08 94.09 95.06 90.58 90.88
Mixed 92.70 78.94 86.91 86.70 82.54 79.32
Asian 94.53 87.33 90.51 90.13 88.94 81.94
Black 92.77 85.93 89.49 89.42 85.74 71.91
Chinese 91.81 74.51 85.74 86.39 85.12 79.34 e
Others 91.74 78.94 89.50 88.53 84.96 80.27 Asian = Male
Black ® Female
= Chinese
= Others
Fairness in cardiac MR image analysis: an investigation of bias due to data imbalance in deep learning based segmentation Ethnicity Gender

Puyol-Antdn E, Ruijsink B, Piechnik SK, Neubauer S, Petersen SE, Razavi R, King AP.
MICCAI 2021



Bias in deep segmentation networks
Age bias in lung segmentation
Fas e

ity
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Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis.
IEEE Transactions on Medical Imaging. 2022 Nov 24;42(2):546-56.
Gaggion N, Mansilla L, Mosquera C, caMilone DH, Ferrante E.



Auditing fairness in medical image analysis model

Evaluate on subgroups Compute fairness metrics
* Dice gap
M
Trained * Dice STD
Segmentati SER = E?I}fj(q:gggj))
on Model * Dice Skewed error rate (SER)

Hausdorff based metrics

Etc

Limitation: we require ground-truth annotations to compute most fairness metrics for segmentation



Unsupervised Bias Discovery (UBD)
in deep segmentation networks

Can we anticipate bias for segmentation
in new populations
without ground-truth annotations?



Proposed solution

UBD based on Reverse Classification Accuracy (RCA)

Image ]1

~N

Image I Prediction S, \ Image J
2

— —
Affine + Non-rigid p—
Registration for
Label Propagation

RCA
Estimator

(

Top k Similar Images
L~

Reverse classification accuracy: predicting segmentation performance in the absence of ground truth.

IEEE transactions on medical imaging. 2017
Valindria VV, Lavdas I, Bai W, Kamnitsas K, Aboagye EO, Rockall AG, Rueckert D, Glocker B.

= avg kDSC(S,k,S;;‘)

Predicted DSC(S,)



Proposed solution

UBD based on Reverse Classification Accuracy (RCA)

Image J

- .
"m'\\
4 Image I Prediction S, 3
mage B rediction 5, Image J, 8
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= Registration for -
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Q E ©
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We will use RCA to estimate the signed gap in terms of DSC (or HD) ADSCRCA DSCRCA DSCRCA
between different demographic subgroups



Experimental validation of RCA based UBD

Synthetic experiment

* Mix of 4 different x-ray datasets (comprising a total of 911 images) including JSRT,
Montgomery, Shenzhen and a minor subset of the Padchest dataset.

 UNet model trained via a compound soft Dice and cross-entropy loss

* We saved 12 different Unet versions from intermediate training
checkpoints.




Experimental validation of RCA based UBD

Synthetic experiment

Simulated scenario: the segmentation quality varies based on sex, with either male or
female patients exhibiting superior performance.

We selected pairs of UNet models (M;, M;) to segment the male patients (M;) and
female patients (M)

Masks were coming from different models, but in this synthetic experiment we consider
them to be generated by a single fictitious model whose fairness we would aim to audit.



Results: simulated scenario

DSC estimated with GT

Real Heart ADSC
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UNet model tested on Males
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DSC estimated without GT

Estimated Heart ADSCRCA

0 2 4 6 8 10
UNet model tested on Females

ADSCFRCA = DSCECA — DSCECS
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Results: simulated scenario

Heart HD Heart
0.3
= 0.67*x - 0.01
P— gearson: ())(.99 400 Y= 0.74*x - 19.00 '
Pearson: 0.99
0.2
S 200
g 0.1 ‘n
@ T
2 S|
T 00 ° 0
5 -
- £
ﬁ —-200
-0.2
-400
-0.3
-0.4 -0.2 0.0 0.2 0.4 -500 -250 0 250 500
Real ADSC

Real AHD



Results: auditing real models

DSC

1.00

0.95

0.90

0.85

0.80

0.70

0.65

0.60

0.55

We consider one model trained
on 100% males and another on
100% females.

DSC estimated with GT

Heart DSC
T T - il
A
A A A
¢ ——
L N .
¢
Tested In
[0 Males
Females
Males Females
Trained In

1.00

0.95

0.90

0.85

0.80

We tested both models on Surprisingly, we found that both
male and female images separately models tend to perform better
on female than male patients

Estimated without GT

Heart DSCRCA Heart
Tested In y = 0.45*x - 0.03
1 Males ~0.028 Pearson: 0.93
[ Females
— —— —-0.030
< —0.032
(v
4
@
A /'y a —0.034
<
A 'y g
+~ —0.036
[
E
0
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1 \ $
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O
—-0.044
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CheXmask: a large-scale dataset of anatomical segmentation
masks for multi-center chest x-ray images
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CheXmask

a large-scale dataset of anatomical segmentation
masks for multi-center chest x-ray images
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UBD at large scale: CheXmask
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DSC vs. Patient Age
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AP images tend to come from hospitalized patients, who are more difficult to position in standard views and usually include artifacts or cables
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Anatomical segmentation

Domain Adaptation and Generalization

Model Calibration in Biomedical Image Analysis

Fairness in ML for Biomedical Image Analysis

Learning representations of life




Domain adaptation and generalization

How can we obtain models that generalize to unseen image domains? i
Laborgtorio de Inteligencia Artificial Aplicada

Gradient Surgery for Domain Generalization Unsupervised Domain Adaptation via CycleGAN for White Matter

Mansilla L, Echeveste R, Milone D, Ferrante E. Hyperintensity Segmentation in Multicenter MR Images
Palladino J, Fernandez Slezak D, Ferrante E.

ICCV 2021
SIPAIM-MICCAI Symposium 2020
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Model Calibration in Biomedical Image Analysis

How can we obtain calibrated posteriors when training ML models for classification and segmentation?

Orthogonal Ensemble Networks for Biomedical Image Segmentation
Larrazabal A, Martinez C, Doltz J, Ferrante E.

MICCAI 2021

Better Calibrated Model

Overconfident model

ECOLE DE
TECHNOLOGIE

SUPERIEURE

Université du Québec

ETS

Le génie pour lindustrie

Maximum Entropy on Erroneous Predictions:
Improving model calibration for medical image segmentation
Larrazabal A, Martinez C, Doltz J*, Ferrante E*.

MICCAI 2023

£dice + ﬁH({}) Edice + EH();w) Edice + ﬁKL({/w)
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Fairness in ML for Biomedical Image Analysis

Characterizing and mitigating fairness issues in ML models for biomedical image analysis

Gender |mbalanc.e. in medical Imaging datas.ets prqduces biased Addressing fairness in artificial intelligence for medical imaging
classifiers for computer-aided diagnosis Ricci Lara A., Echeveste R., Ferrante E.
Larrazabal A., Nieto N., Peterson V., Milone D., Ferrante E. 11
Nature Communications (2022)
Proceedings of the National Academy of Sciences (PNAS) 2020 5ED

HOSPITAL ITALIANO

PN AS Proceedings of the PR— nature communications e Buenos Ares

National Academy of Sciences
f the United Stat fA i ° - . ° - ° ° °

il e Addressing fairness in artificial intelligence for medical
imaging

Articles Front Matter News Podcasts Authors

Maria Agustina Ricci Lara &, Rodrigo Echeveste & & Enzo Ferrante

Nature Communications 13, Article number: 4581 (2022) \ Cite this article

NEW RESEARCH IN Physical Sciences v Social Sciences
8900 Accesses | 9 Citations | 49 Altmetric | Metrics
BRIEF REPORT R)
Gender imbalance in medical |mag|ng o A plethora of work has shown that Al systems can systematically and unfairly be biased

= =g against certain populations in multiple scenarios. The field of medical imaging, where Al
datasets produces biased classifiers for y oP! o me : , Sine
. . . systems are beginning to be increasingly adopted, is no exception. Here we discuss the
com pUter'alded dlagnOSIS meaning of fairness in this area and comment on the potential sources of biases, as well
Agostina J. Larrazabal, Nicolds Nieto, ® Victoria Peterson, ® Diego H. Milone, and as the strategies available to mitigate them. Finally, we analyze the current state of the
Enzo Ferrante field, identifying strengths and highlighting areas of vacancy, challenges and

PNAS first published May 26, 2020 https://doi.org/10.1073/pnas.1919012117 opportunities that lie ahead.

Edited by David L. Donoho, Stanford University, Stanford, CA, and approved April 30, 2020 (received for review October



Learning representations of life

Linking image derived phenotypes with genetic information via ML methods (imaging genetics)

ChronoRoot: High-throughput phenotyping by deep segmentation
networks reveals novel temporal parameters of plant root system
architecture
Gaggion N, Ariel F, Daric V, Lambert E, Legendre S, Roule T, Camoirano A,
Milone D, Crespi M, Blein T, Ferrante E.

f

G IgaSC|ence Institute of Plant Sciences

Paris - Saclay
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Image-derived phenotype extraction for genetic discovery via
unsupervised deep learning in CMR images

Bonazzola R, Ferrante E ,Ravikumar N, Attar R,
Syeda-Mahmood T, Frangi A.

MICCAI 2023
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