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Abstract: Identifying the relevant variables for a classification model with correct
confidence levels is a central but difficult task in high-dimension. Despite the core
role of sparse logistic regression in statistics and machine learning, it still lacks a
good solution for accurate inference in the regime where the number of features p
is as large as or larger than the number of samples n. Here we tackle this problem
by improving the Conditional Randomization Test (CRT). The original CRT algo-
rithm shows promise as a way to output p-values while making few assumptions
on the distribution of the test statistics. As it comes with a prohibitive compu-
tational cost even in mildly high-dimensional problems, faster solutions based on
distillation have been proposed. Yet, they rely on unrealistic hypotheses and re-
sult in low-power solutions. To improve this, we propose CRT-logit, an algorithm
that combines a variable-distillation step and a decorrelation step that takes into
account the geometry of `1-penalized logistic regression problem. We provide a the-
oretical analysis of this procedure, and demonstrate its effectiveness on simulations,
along with experiments on large-scale brain-imaging and genomics datasets.

1. Introduction

Logistic regression is one of the most popular tools in modern applications of statis-
tics and machine learning, partly due to its relative algorithmic simplicity. The method
belongs to the class of generalized linear models that handle discrete outcomes, i.e. clas-
sification problems. Here, we focus on the binary classification problem, where one obser-
vation of the responses y ∈ {0, 1} and the data vectors x ∈ Rp follows the relationship:

P(y = 1 | x) = g(xTβ0) = 1
1 + exp(−xTβ0) , (1)

where g(x) = 1/(1 + exp(−x)) is the sigmoid function, and β0 the vector of true regres-
sion coefficients. In the classical setting, in which the number of samples n is greater
than the number of features p, an estimate β̂ of the true signals β0 can be obtained
using maximum likelihood estimation (MLE). The asymptotic behaviour and derivation
of the test statistic, confidence intervals and p-values of the MLE have been well studied,
e.g. in Cox and Hinkley (1979). The availability of p-values for the test statistics makes
it possible to rely on multiple hypothesis testing, where one wants to test which variables
have a non-zero effect on the outcome, conditionally to the remaining variables, i.e.

(null) Hj0 : xj ⊥y | x−j vs. (alternative) Hjα : xj 6⊥y | x−j ,

for each feature j ∈ [p] def.= {1, . . . , p} and x−j
def.= {x1, x2, . . . , xj−1, xj+1, . . . , xp}. Equiv-

alently, under the setting in Eq. (1), we have:

(null) Hj0 : β0
j = 0 vs. (alternative) Hjα : β0

j 6= 0.

Unfortunately, this line of analysis cannot be applied to the high-dimensional regime,
where p is larger than n, as argued in Sur and Candès (2019); Yadlowsky et al. (2021);
Zhao et al. (2022). These works show that in the regime where limn,p→∞ n/p = κ, the
MLE estimator exists only when κ > 2. However, we note that this type of analysis is
done without the addition of `1-regularization to the likelihood function, i.e. without
using a penalized estimator to enforce sparsity.
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Motivation Our focus in this paper is to do inference with statistical guarantees
on high-dimensional sparse logistic regression, where p is larger or much larger than
n. This setting is typical in modern applications of pattern recognition, e.g. in brain-
imaging or genomics (Bach et al., 2012), with p as large as hundreds of thousands
–compressible to thousands– but n stays at most few thousand. The family of methods
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Figure 1: QQ-Plot for 1000 samples of test-statistic of a null index for logistic
regression, with simulated data, n = 200, p = 400. Left: Statistics obtained from run-
ning Distilled-CRT, and Right: from our proposed algorithm. The empirical distribution
of dCRT null-statistic strays far from theoretical distribution, which is standard normal,
while empirical distribution of CRT-logit’s null test score is much closer.

we consider is the Conditional Randomization Test (CRT) (Candès et al., 2018). CRT
relies on generating multiple noisy copies of original variables to output empirical p-
values in high-dimensional inference problems. However, prohibitive computational cost
makes CRT impractical, as discussed at length in Candès et al. (2018); Tansey et al.
(2022); Berrett et al. (2020); Liu et al. (2021). There have been several lines of research
attempting to fix this problem, most notably the distilled Conditional Randomization
Test (dCRT) (Liu et al., 2021). This work introduced a distillation step as a replacement
for the randomized sampling step to compute the importance statistics (see Section 2 for
more details). It provides a way to output p-values for multiple types of regression and
classification problems, assuming convergence to Gaussian of the test statistic in large-
sample regime. Yet, as shown in the left panel of Figure 1, the originally proposed dCRT
test-statistic for logistic regression does not behave as well as intended. In particular, its
null distribution deviates markedly from standard normal in high-dimension whenever
n/p ≤ 1.

Contribution We propose a correction for the dCRT, inspired by the decorrelation
method presented in Ning and Liu (2017). The decorrelation step makes the null-
distribution of the test statistics much closer to standard normal, as shown on the
right panel of Figure 1, and thus increases the statistical power of the method. We pro-
vide asymptotic analysis of this method, which shows that CRT-logit produces standard
normal test-statistic in large-sample regime. In addition, we validate the high perfor-
mance of CRT-logit on large-scale brain-imaging and genetics datasets, thus showing its
usefulness in practical applications.

Related works The closest cousin of the Conditional Randomization Test is Knock-
off Filter (Barber and Candès, 2015; Candès et al., 2018), a recent breakthrough in the
False Discovery Rate (FDR) control literature. It relies on the creation of additional
noisy features, called knockoffs, to calculate variable-importance statistics. Another ex-
tension of vanilla CRT is the Holdout Randomization Test (HRT) (Tansey et al., 2022).
While still requiring multiple sampling of noisy variables, HRT solves the computational
issue of original CRT by doing heavy model fitting only once on one part of the dataset,
and test statistics calculation on the other part, without refitting the model. However,
this method relies on sample-splitting, hence inherently suffers from a loss of statistical
power. A parallel line of work has introduced the Conditional Permutation Test (CPT)
(Berrett et al., 2020), a non-parametric alternative to CRT that relies on a random
shuffling mechanism applied to original variables, instead of multiple sampling of new
variables. This potentially makes CPT more robust to model mis-specification. Yad-
lowsky et al. (2021) recently proposed a method called SLOE, which adapts the analysis
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of Zhao et al. (2022), but in the regime different from what we are considering, where
limn,p→∞ n/p → κ ∈ (1, 2), and more importantly without sparsity-inducing penalty.
On a separate note, we notice the similarity of dCRT (Liu et al., 2021) with debiased
Lasso (Javanmard and Montanari, 2014; van de Geer et al., 2014; Zhang and Zhang,
2014). This line of work proposed a debiasing formula for the estimator, which makes
the asymptotic distribution of (β̂LASSO−β0) standard normal, so that one can compute
the test statistic and p-value associated with each variable.

2. Background

Notation We denote matrices, vectors, scalars and sets by bold uppercase, bold low-
ercase, script lowercase , and calligraphic letters, respectively, e.g. X, x, x, and X . The
i-th row of a matrix X will be denoted Xi,∗ , the j-th column X∗,j and the (i, j)-th
element Xi,j . For any natural number p, we denote the set [p] def.= {1, . . . , p}. For each
x ∈ Rp and j ∈ [p], we denote x−j

def.= {x1, x2, . . . , xj−1, xj+1, . . . , xp} a p−1 dimensional
observation after removing the j-th variable. Correspondingly, X−j is the data matrix
X ∈ Rn×p with column X∗,j removed. The cumulative distribution function (CDF) of
the standard Gaussian distribution will be denoted Φ(·). The indicator function of a
random event A will be denoted 1A. For any two positive sequences xn and yn, we write
xn � yn if cyn ≤ x ≤ Cyn for all n, for some positive constants c and C. For a vector x,
‖x‖p denotes its `p norm. For a function f : Rp → R, ∇jf denotes its gradient w.r.t. the
j-th variable, for j ∈ [p].

Problem setting We consider exclusively binary classification, where the response
vector is denoted y ∈ {0, 1}n and the data matrix X ∈ Rn×p consists of n p-dimensional
samples. Throughout the paper, we assume the data {Xi,∗}ni=1 are i.i.d. and follow a
distribution with zero mean and population covariance matrix Σ. Moreover, we assume
that Xi,∗ and yi follow the logistic relationship in Eq. (1). We denote the support set
S def.= {j ∈ [p] : β0

j 6= 0} and assume that it is sparse, i.e. card(S) = s∗ � p, where
card denotes the cardinality of a set. Furthermore, Ŝ def.= {j ∈ [p] : β̂j 6= 0} indicates
an estimation of S, where β̂j is an estimate of the true signal β0

j . We try to obtain it
through a `1-penalized logistic estimator:

β̂λ = argmin
β∈Rp

`(β) + λ‖β‖1 , with `(β) = − 1
n

n∑
i=1
{yi(Xi,∗β)− log [1 + exp(Xi,∗β)]} .

(2)

We denote I def.= Eβ0 [∇2`(β0)] the Fisher information matrix, and Ij|−j the partial Fisher
information, defined by Ij|−j

def.= E[∇2
jj`(β0)−[∇2

j,−j`(β0)]>[∇2
−j,−j`(β0)]−1∇2

−j,j`(β0)] =
Ijj − Ij,−jI−1

−j,−jI−j,j , where Ij,−j is the row-vector made with the jth-row and the
columns corresponding to β−j , I−j,−j the sub-matrix of I made with the rows and
columns corresponding to β−j . This quantity, defined following Cox and Hinkley (1979,
pp. 323), plays an important role in our proposed method, detailed in Section 3.

Statistical control with False Discovery Rate To quantify statistical errors, we
consider the False Discovery Rate, introduced in Benjamini and Hochberg (1995). Given
an estimate of the support Ŝ, the false discovery proportion (FDP) is the ratio of the
number of selected features that do not belong to the true support S, divided by the
total number of selected features. The False Discovery Rate is the expectation of the
FDP:

FDP(Ŝ) = card({j : j ∈ Ŝ, j /∈ S})
card(Ŝ) ∨ 1

and FDR(Ŝ) = E[FDP(Ŝ)].

Conditional Randomization Test (CRT) and Distillation CRT (dCRT) The
concept of Conditional Randomization Test was originally proposed in the model-X
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knockoff paper (Candès et al., 2018) as a way to output valid empirical p-values using
knockoff variables. The principle of the knockoff filter is first to sample noisy copies
X̃∗,j of variable X∗,j , given a known sampling mechanism Pj |−j . One advantage of the
knockoff filter is that no specific assumption is placed on the distribution of the inferred
test statistic. However, this means that, in general, there is no mechanism to derive
p-values from the knockoff statistic. This motivates the introduction of CRT, which
requires running high-dimensional inference for each variable j B times. However, the
computation cost of CRT is prohibitive when p grows large: assuming that we use the
Lasso program with coordinate descent to compute TCRT

j , its runtime would be O(Bp4)
(Hastie et al., 2009, pp. 93). Moreover, CRT requires decently large B to make the
empirical distribution of the p-values smooth enough. Reducing the computational cost
of CRT is the main motivation of several works (Berrett et al., 2020; Liu et al., 2021;
Tansey et al., 2022). One of them is the introduction of distillation-CRT (dCRT) by Liu
et al. (2021). The main appeal of this method is that it can output p-values analytically,
therefore bypassing the multiple knockoffs sampling steps used to infer on each variable,
and leads to a reasonable reduction of the computation cost.

Distillation operation The key addition of dCRT is the distillation operation: for
each variable j, we want to distill all the conditional information of the remaining
variables X−j to xj and to y via least-squares minimization with `1-regularization to
enforce sparsity. For each variable j, we first solve the lasso problem by regressing X∗,j
on X−j ,

β̂dX∗,j = argmin
β∈Rp−1

1
2‖X∗,j −X−jβ‖22 + λdx‖β‖1. (3)

For distillation of variable j and the binary response y with logistic relationship, Liu
et al. (2021) briefly suggested to solve a penalized estimation problem, similar to Eq. (2):

β̂dy,j = argmin
β∈Rp−1

− 1
n

n∑
i=1

{
yi(X>i,−jβ)− log

[
1 + exp(XT

i,−jβ)
]}

+ λ‖β‖1. (4)

Then, a test statistic is calculated for each j = 1, . . . , p:

Tj =
√
n
〈y−X−jβ̂dy,j ,X∗,j −X−jβ̂dX∗,j 〉
‖y−X−jβ̂dy,j‖2‖xj −X−jβ̂dX∗,j ‖2

, (5)

which, under the null hypothesis, and more importantly, assuming linear relationship
between Xi,∗ and y, follows standard normal distribution asymptotically, conditional to
y and X−j . It then follows that we can output a p-value for each variable j by taking
p̂j = 2 [1− Φ (Tj)].

However, the formulation of test statistics in Eq. (5) is not truly satisfactory in the
setting of sparse logistic regression. More specifically, both the calculation of regression
residuals y − X−jβ̂dy,j and test statistics Tj do not take into account the non-linear
relationship between X and the binary response y. The first row of Figure 6 plots the
qq-plot of the test statistics Tj for logistic regression, which shows that even in the
classical regime where n > p, its distribution is far from standard normal.

3. Decorrelating Test-Statistics for High-Dimensional Logistic Regression

As we have elaborated, the formulation of dCRT is not well-suited for problems other
than penalized least-squares regression. We therefore propose an adaptation of dCRT in
the case of logistic regression, inspired by the classical work of Cox and Hinkley (1979)
and by Ning and Liu (2017). First, note that when testing Hj

0 : β0
j = 0 under the case

where n > p, we have the classical Rao’s test statistic, defined by

TRao
j =

√
n Î−1/2

j|−j ∇j`(0, β̂−j) , (6)

where∇j`(0, β̂−j)
def.= ∇βj

`(βj , β̂−j)
∣∣∣
βj=0

is the Fisher score. Here β̂−j
def.= argminβ−j∈Rp−1 `(βj ,β−j)

is the constrained maximum-likelihood estimator of β−j with fixed βj , and Îj|−j is a
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consistent estimator of the partial Fisher information Ij|−j . The appearance of the
term Î−1/2

j|−j is due to the fact that under the null hypothesis Hj
0 , we have, by Cox and

Hinkley (1979, Chapter 9), and by Rao (1948),

√
n∇j`(0, β̂−j)

(d)−−−−→
n→∞

N (0, Ij|−j) ,

which makes the asymptotic distribution of TRao
j standard normal. However, in the high-

dimension case, where n < p, we do not reach this convergence in distribution. To see
this, consider the Taylor expansion of the Fisher score of variable j around any given
estimator β̃−j of the true β0

−j :

∇j`(0, β̃−j) = ∇j`(0,β0
−j) +∇2

j,−j`(0,β0
−j)(β̃−j − β0

−j) +O
(

(β̃−j − β0
−j)2

)
(7)

On the right-hand side, the first term converges weakly to a normal distribution due
to the Central Limit Theorem, the remainder term becomes negligible using `1 regu-
larization to induce sparsity, but the second term does not, due to estimation bias and
sparsity effect of β̃−j (Fu and Knight, 2000).

Adapting distillation operation for sparse logistic regression Fortunately, Eq. (7)
suggests that for each variable j, we can debias the Fisher score by correcting the impact
of other terms. In particular, for each variable j, we replace the Fisher score by

∇j`(0,β−j)− Ij,−jI−1
−j,−j∇−j`(0,β−j) . (8)

The inversion of the large matrix I−j,−j ∈ R(p−1)×(p−1) is computationally prohibitive,
but we can estimate the term Ij,−jI−1

−j,−j straightforwardly by solving

ŵj = argmin
w∈Rp−1

1
2n

n∑
i=1

[
∇2
j,−j`i(β̂)−wT∇2

−j,−j`i(β̂)
]2

+ λ‖w‖1, (9)

for each variable j, where β̂ is given with Eq. (2). Moreover, since we have the closed-
form of the derivatives of the logistic loss `(β̂), a simple derivation from Eq. (9) suggests
the following xj-distillation operation, adapted for logistic regression:

β̂dX∗,j = argmin
β∈Rp−1

1
n

n∑
i=1

g′′(Xi,∗β̂)(Xi,j −Xi,−jβ)2 + λdx‖β‖1, (10)

where the extra term (second-order derivative of the sigmoid function) g′′(Xi,∗β̂) =
exp (Xi,∗β̂)

[1+exp (Xi,∗β̂)]2 appears from differentiating twice the loss function `(β̂), and β̂ = β̂λ is

defined in Eq. (2). On the other hand, we can obtain β̂
dy,j
j from β̂ by simply omitting

the j-th coefficient from it, i.e.

β̂dy,j def.= (β̂1, β̂2, . . . , β̂j−1, β̂j+1, . . . , β̂p) .

Finally, the equation for decorrelated test score, adapted from both Eq. (5) and (6),
reads

T decorr
j = − 1√

n
Î−1/2
j|−j

n∑
i=1

[
yi − g(Xi,−jβ̂

dy,j)
] [

Xi,j −Xi,−jβ̂
dX∗,j

]
, (11)

where the formula for empirical partial Fisher information is Îj|−j = n−1∑n
i=1 g

′′(Xi,∗β̂)(Xi,j−
Xi,−j β̂dX∗,j ) Xi,j . A summary of the full procedure, which we call CRT-logit, can be
found in Algorithm 1. Notice that the runtime of CRT-logit is the same as dCRT, which
means in general slower than KO and HRT. To speedup inference time, we introduce a
variable-screening step that eliminates potentially unimportant variables before distil-
lation, similar to dCRT. We provide empirical benchmark of runtime of each method in
Section 4.5.
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Setting `1-regularization parameter λ and λdx In general, we advise to use cross-
validation for obtaining β̂λ in Eq. (2) and for X∗,j-distillation operator, as defined
by Eq. (10). This is inline with the theoretical argument for dCRT (Liu et al., 2021,
Lemma 1 and Theorem 3). However, we also observe empirically that choosing the `1-
regularization parameters of the distillation step can strongly affect how variables are
selected by CRT-logit. We provide more details Appendix C, and leave further theoretical
investigations of this phenomenon for future work.

Algorithm 1: CRT-logit
1 INPUT design matrix X ∈ Rn×p, reponses y ∈ Rn
2 OUTPUT vector of p-values {pj}pj=1;
3 β̂λ ← solve_sparse_logistic_cv(X,y) // Using Eq. (2)
4 ŜSCREENING ← {j : j ∈ [p], β̂j 6= 0}
5 for j ∈ ŜSCREENING do
6 β̂

dX∗,j ← solve_scaled_lasso_cv(X∗,j ,X∗,−j) // Using Eq. (10)
7 β̂dy,j ← (β̂1, β̂2, . . . , β̂j−1, β̂j+1, . . . , β̂p)
8 T decorr

j ← decorrelated_test_score(j,X,y, β̂dX∗,j , β̂dy,j) // Using Eq (11)
9 p̂j ← 2[1− |Φ

(
T decorr
j

)
|]

10 end
11 for j /∈ ŜSCREENING do
12 p̂j = 1
13 end

Asymptotic analysis of the Decorrelated Test Statistic We now provide the-
oretical analysis of CRT-logit in large-sample regime. All the proofs can be found in
Appendix A. Without writing it explicitly, in our analysis, we consider p = p(n), and
the following assumption.

Assumption 3.1 (Regularity conditions). Assume that

(A1) λmin(I) ≥ κ2 for some constant κ > 0.
(A2) Sparsity of β0 and w0,j, with w0,j the ground truth weights for the distillation

of xj in Eq. (10): |S| = s∗ and ‖w0,j‖0 = s′ with s∗ = o
(
n1/2/ log(p)

)
and

s′ = o
(
n1/2/ log(p)

)
.

(A3) For all i ∈ [n], Xi,∗ and (−yi + g′(Xi,∗β)) are sub-exponential random variables,
and |Xi,−jw0,j | ≤ K almost surely, for some constant K.

We then have the following result, that states that the asymptotic distribution of the
decorrelated test scores is standard normal.

Theorem 3.1. Let j ∈ [p], and let T decorr
j be defined as in Eq. (11), with λ � λdx �√

n−1 log(p). Then, if Assumption 3.1 holds true, under the null hypothesis Hj0 : β0
j = 0,

we have

∀t ∈ R , lim
n→∞

|Pβ0(T decorr
j ≤ t)− Φ(t)| = 0 ,

where Φ(·) is the CDF of the standard Gaussian distribution. Moreover, for each j ∈ [p],
if we define p̂j

def.= 2 [1− Φ (Tj)] , i.e. p̂j is the output of Algorithm 1, then, under the
null hypothesis Hj0 : β0

j = 0, we have

lim sup
n→∞

Pβ0(p̂j ≤ t) ≤ t for all t ∈ [0, 1] ,

that is, the p-values output by Algorithm 1 are valid asymptotically.

FDR control with CRT-logit We now state the second main result, which estab-
lishes that the FDR of the test is controlled when using Benjamini-Yekutieli procedure
(Benjamini and Yekutieli, 2001) with the p-values output from Algorithm 1, assuming
that the number of tests p is fixed.
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Theorem 3.2. Under Assumptions 3.1 and logistic model defined in Eq (1), with λ �
λdx �

√
n−1 log(p), assume n−1/2(s′∨s∗) log(p) = o(1), and assume the number of tests

p is fixed. Let α ∈ (0, 1) and ŜBY-CRT be given by applying following the Benjamini-
Yekutieli FDR-controlling procedure to the CRT-logit p-values {p̂j}j∈[p], output from
Algo.1. Then, we have

lim sup
n→∞

E

[
card(ŜBY-CRT ∩ Sc)
card(ŜBY-CRT) ∨ 1

]
≤ α .

Remark 3.1. Assumption 3.1 is also assumed in Ning and Liu (2017); van de Geer
et al. (2014), which also provide a detailed discussion of this regularity assumption in
generalized linear models. This assumption, in turn, is built on the regularity assump-
tion in the classic work of Cox and Hinkley (1979, Chapter 9) to establish asymptotic
normality of Rao’s test statistic. Theorem 3.1 is an adaptation of Ning and Liu (2017,
Theorem 3.1), specialized for the case of sparse logistic regression and the p-values output
from CRT-logit.

4. Empirical Results

We provide benchmarks of the proposed CRT-logit algorithm along with most other
methods mentioned in the introduction, in particular: model-X Knockoff (KO) (Can-
dès et al., 2018), Debiased Lasso (dLasso) (Zhang and Zhang, 2014; Javanmard and
Montanari, 2014), original CRT with 1000 samplings (Candès et al., 2018), Holdout
Randomization Test with 5000 samplings (Tansey et al., 2022), and Lasso-Distillation
CRT (dCRT) (Liu et al., 2021). We did not include SLOE (Yadlowsky et al., 2021) and
CPT (Berrett et al., 2020), as the provided open-source implementation are particularly
unstable and do not fit in the sparse-regression setting (for SLOE), or implementation
are not available (for CPT).

Remark 4.1. As a slight caveat, in the simulated and semi-realistic experiment sec-
tions (Sections 4.1, 4.2 and 4.3), we introduce an additional noise term to the logistic
relationship of Eq. (1):

P(yi = 1 | xi) = g(xTi β0 + σξi) , (12)

where ξi ∼ N (0, 1) is a Gaussian noise and σ > 0 the noise magnitude. The formula
in Eq. (12) has been used in previous works, e.g. Bzdok et al. (2015). There is a clear
justification to this: in most of the applications we consider, data are collected with
measurement errors. In the case of brain-imaging, for example, recording the brain signal
of the human subjects by scanners often includes noise caused either from the machine,
or from the movement of the subjects, as elaborated by Lindquist (2008). Moreover, in
general, this setting corresponds to a model mis-specification, which the CRT-logit is
robust to under Assumption 3.1, following the arguments as in Ning and Liu (2017,
Section 5).

Remark 4.2. We use Benjamini-Hochberg step-up procedure (Benjamini and Hochberg,
1995) to control FDR with the p-values in all the empirical experiments in Section 4.2
and App. 4.4, as we observe empirically the FDR is usually controlled with this procedure,
without compromising power with the conservative BY bound.

4.1. Effectiveness of the decorrelation step

To show how decorrelating the test statistics helps, we set up a simulation with matrix X
of p = 400 features and vary the number of samples n ∈ {200, 400, 800, 4000}. The binary
response vector y is created following Eq. (12), and the design matrix X is sampled
from a multivariate normal distribution with zero mean, while the covariance matrix
Σ ∈ Rp×p is a symmetric Toeplitz matrix, where the parameter ρ ∈ (0, 1) controls
the correlation between neighboring features: correlation decreases quickly when the
distance between feature indices increases. The true signal β0 is picked with a sparsity
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parameter κ = s∗/p that controls the proportion of non-zero elements with magnitude
2.0, i.e. βj = 2.0 for all j ∈ S. For the specific purpose of this experiment, non-zero
indices of S are kept fixed. The noise ξ is i.i.d. normal N (0, Idn) with magnitude
σ = ‖Xβ0‖2/(

√
n SNR), controlled by the SNR parameter. In short, the three main

parameters controlling this simulation are correlation ρ, sparsity degree κ and signal-to-
noise ratio SNR. We generate randomly 1000 datasets, and run dCRT and CRT-logit
algorithm to obtain one sample of test statistics {Tj}pj=1 and {T decorr

j }pj=1. Then, we
pick 1000 samples of one null test statistic Tj and T decorr

j , defined in Eq. (5) and (11),
respectively, and plot the qq-plot of their empirical quantile versus the standard normal
quantile. From the results in Figure 6, we observe that the empirical null distribution of
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Figure 2: QQ-Plot for one null CRT statistic for logistic regression, with vary-
ing number of samples and a fixed number of variables p = 400. The theo-
retical quantiles are obtained from a standard Gaussian distribution. The decorrelation
step makes the empirical null distribution of the null statistics much closer to standard
Gaussian. Parameters: SNR = 3.0, ρ = 0.4, sparsity = 0.06. Upper row: Distilled-CRT
statistic defined by Eq. (5). Bottom row: CRT-logit, with decorreleated test score defined
by Eq. (11) (ours).

the test statistic is much closer to a standard normal when adding the decorrelation step.
In particular, when the sample size n increases to 400, the decorrelated test statistic has
empirical quantiles almost inline with the theoretical quantiles of the standard normal
distribution, while dCRT test score strays away from the 45-degree line. Again, we
emphasize that the normality of Tj is crucial for the p-values calculation. This outlines
the importance of the decorrelating step on Tj .

4.2. High-dimensional scenario with varying simulation parameters

To see how each algorithm performs under different settings, we follow the same simu-
lation scenario as in Sec. 4.1, but vary each of the three simulation parameters, while
keeping the others unchanged at default value of SNR = 2.0, ρ = 0.5, κ = 0.04. We target
a control of FDR at level 0.1, using Benjamini-Hochberg procedure. Results in Figure 3
show that CRT-logit is the most powerful method while still controlling the FDR. More-
over, in the presence of higher correlations between nearby variables (ρ > 0.6), other
methods suffer a drop in average power, but this is not as severe for CRT-logit. The orig-
inal CRT, in general, is conservative. We believe that this is due to using only B = 500
samplings to generate empirical p-values for the two methods, due to prohibitive av-
erage runtime of the algorithm with larger B (which we provide in Section 4.5). For
HRT, the conservativeness is expected, due to the usage of only half of the sample for
test-statistics calculation – even though the number of samplings is bigger than original
CRT (B = 5000). We note that, perhaps surprisingly, the debiased lasso (cdlasso) is
the most conservative. It controls FDR well in all settings. This might be due to the fact
that dlasso also relies on the choice of the `1-regularization λ in the nodewise Lasso
operation, similar to the X∗,j-distillation of dCRT, as noted in Section 1. What makes
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the difference is that instead of using cross-validation for setting λ for each variable j,
a fixed value of λ = 10−2λmax is used in the implementation of dlasso. We strongly
suspect this fixed value is not optimal, which makes the procedure powerless.
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Figure 3: FDR/Average Power of 100 runs of simulations across varying
parameters in high-dimensional settings. Default parameter: n = 400, p =
600,SNR = 2.0, ρ = 0.5, κ = 0.04. FDR is controlled at level α = 0.1. Methods: Debi-
ased Lasso (dlasso), model-X Knockoff (KO-logit), original CRT (CRT), HRT (HRT),
dCRT (dCRT), and our version of CRT (dark green line – CRT-logit).

4.3. Application: large-scale analysis on brain-imaging dataset

Description The Human Connectome Project dataset (HCP) is a collection of brain
imaging data on healthy young adult subjects with age ranging from 22 to 35. More
specifically, the input X is a set of 2mm statistical maps of 400 subjects across 8 cognitive
tasks. These are called z-maps, as the data follow a standard normal distribution under
the null hypothesis. Each task in turn features 2 different contrasts, which effectively
form binary responses y ∈ {0, 1}n. We propose to fit y through distributed brain signals
and identify relevant brain locations. The setting is high-dimensional with n = 800
samples, corresponding to 400 subjects, while the total number of variables is p ≈
200, 000 brain voxels. Following Nguyen et al. (2019); Chevalier et al. (2021), we use a
hierarchical clustering scheme to group the variables into C = 1000 spatially connected
clusters. We provide details of the pre-processing step in Appendix F.

Creating semi-realistic ground-truth and response labels Since there is no
ground truth for this dataset, we create synthetic true signals by fitting the data X and
response y with an `1-penalized logistic classifier. In other words, the estimator β̂logreg

will serve as true regression coefficients for each task. Then, to avoid bias in simulating
label ŷ, the z-maps matrix X of one task are used in conjunction with the discriminative
pattern map β̂logreg from the next task in the following order: relational, gambling,
emotion, social. For instance, we use β̂logreg of gambling with z-maps data matrix of
relational, i.e. for all i = 1, . . . , n, given xi,relational,

ŷi ∼ Bern
{
g(x>i,relational β̂logreg

gambling + σξi)
}
, (13)

where Bern(a) is a Bernoulli probability mass function that takes a value 1 with prob-
ability a, σ is a noise magnitude and ξi is a standard normal noise. Finally, we apply
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all inference algorithms on the semi-synthetic data (X, ŷ), and we evaluate their per-
formance using the ground-truth β̂logreg. This simulation setting is similar to Chevalier
et al. (2021), except that here we consider a classification and not a regression problem.
It allows us to calculate the False Discovery Rate and average power with multiple runs
of the inference procedure (across tasks).

Remark 4.3. The i.i.d. assumption is formally violated in this experiment, where for
each subject we analyze two sample image that are not independent. Yet, this remains
a short-range correlation structure, and is thus not a strong challenge to the i.i.d. as-
sumption.
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Figure 4: FDR/Average Power of 50 runs of semi-realistic experiments on four
tasks of Human Connectome Project dataset. Parameters: n = 800 (taken from
400 subjects), SNR = 2.0. Methods (clustering versions): Debiased Lasso (cdlasso),
model-X Knockoff (cKO-logit), original CRT (CRT), HRT (HRT), dCRT (dCRT), and our
version of CRT (dark green line – CRT-logit).

Results Results in Figure 4 show that CRT-logit achieves a better recovery compared
to KO or original CRT/dCRT/HRT, which results in higher statistical power. This gain
comes with a good control of the FDR under desired level α = 0.1. On a related note,
the only analysis where dCRT makes more discoveries than CRT-Logit is in emotion
task, but at the cost of failing to control FDR at nominal level.

4.4. Application: genome-wide association study with Human Brain
Cancer Dataset

Description The last in our benchmark is a Genome-wide Association Study (GWAS)
on the The Cancer Genome Atlas (TCGA) dataset (Weinstein et al., 2013; Vasaikar
et al., 2018). We choose to analyze the Glioma cohort, which consists of n = 1026
patients across a wide age range, diagnosed with this type of brain tumor, with a total
of p = 24776 genes in the data matrix, recorded as copy number variations (CNVs) at the
gene level in log ratio format. As with the brain-imaging inference in Section 4.3, we use
clustering to reduce the dimension to C = 1000 clusters. For the response, a long-term
survivor (LTS) is defined as a patient who survived more than five years after diagnosis
and would be labeled y = 0, and any patient who died within five years would be a short-
term survivor (STS), labeled y = 1. The objective is to identify significant genes that
contribute to classification of the LTS/STS status. Similar to the Human Connectome
Project dataset, there is no real ground-truth for the TCGA Glioma. However, we have
the list of mutations and the frequency of those detected in the diagnosed patients. We
therefore select the 1000 most frequent gene mutations that appeared in this list, i.e. the
ground truth list consists of 1000 genes (variables).

Result The result from Table 1 shows that CRT-logit finds the largest number of
genes. Moreover, most of selected genes in this table are detected in the list of mutated
genes found on recorded patients. Some genes are detected by all the benchmarked
methods, most prominently SPEN, which is found on over 10 % of patients in the cohort.
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Table 1
List of detected genes associated with Glioma Cancer from the TCGA dataset

n = 1026, p = 24776. Empty line (—) signifies no detection. Methods listed in the table are the
clustering version. Commonly detected genes between methods are put in bold text. Most detected

genes are listed in the mutant list database that can be found in the recorded patients (Vasaikar et al.,
2018).

Methods Detected Genes

dLasso —
KO ABCC10, ANK3, CDH23, PTEN, SPEN, SVIL, ZMIZ1
dCRT ANK3, ANKRD30A, CDH23, PTEN, RET, SPEN,ZMIZ1
CRT-logit ABCC10, ANKRD30A, BCOR, EPHA3, PPL, SPAG17, SPEN, SVIL, USP9X
Original CRT ABCC10, BCOR, EPHA3, SPEN, SVIL
HRT ABCC10, SPEN

Furthermore, this gene is known to be associated not only with brain cancer, but also
with other types of cancer in The Human Protein Atlas project (Légaré et al., 2015).
Note that, in the absence of a ground-truth, this does not guarantee all genes found are
associated with glioma, but this experiment demonstrates the capability of CRT-logit
in GWAS studies.

4.5. Average runtime of benchmarked methods

Table 2
Average runtime of benchmarked methods for one simulation (in seconds). Standard error is

reported in parentheses.

Methods Simulated (Sec. 4.2) HCP-semi-real (Sec. 4.3)

Debiased Lasso (Zhang and Zhang, 2014;
van de Geer et al., 2014; Javanmard and
Montanari, 2014)

61.83 (5.2) 154.27 (8.79)

Knockoff Filter (Barber and Candès, 2015;
Candès et al., 2018)

1.62 (0.02) 8.12 (0.62)

CRT (500 samplings) (Candès et al., 2018) 2312.91 (38.21) 7069.96 (109.09)
HRT (5000 samplings) (Tansey et al.,
2022)

14.84 (2.01) 52.17 (4.11)

dCRT[screening=True] (Liu et al., 2021) 16.83 (1.89) 65.18 (3.91)
dCRT[screening=False] (Liu et al., 2021) 370.12 (8.18) 962.40 (20.63)
CRT-logit[screening=True] (this
work)

14.16 (0.35) 61.26 (3.55)

CRT-logit[screening=False] (this
work)

367.91 (4.11) 983.78 (17.26)

Besides statistical performance, it is equally important to assess the computational
cost of inference procedures. The average runtime in Table 2 from the two experiments
shows that the original CRT is not suitable for large-scale inference: it is over 2000
times slower than the fastest method (Knockoff Filter), and over 150 times slower than
dCRT/CRT-logit. The empirical runtime also confirms the effectiveness of the screening
step before doing distillation/decorrelation of the test-statistics: the step makes CRT-
logit and dCRT 20 times faster than without. On a related note, although in theory
Debiased Lasso, dCRT and CRT-logit (both without screening) share the same runtime
complexity, the latter two are slower due to the use of cross-validation to estimate the
sparsity hyperparameter λ and λdx (detailed in Section 3).

5. Discussion

We proposed an adaptation of the Conditional Randomization Test (CRT) for sparse
logistic regression in the high-dimensional regime. A major improvement of CRT-logit,
our proposed algorithm, compared to original CRT, comes from the decorrelation of
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test statistics to make their distribution closer to standard normal. Indeed, results from
synthetic experiments in Figure 6 show that in high-dimension (when 0.5 ≤ n/p ≤ 1.0),
the empirical null distribution of CRT-logit’s test statistic T decorr is much more similar
to a standard normal compared to the original CRT test statistic. Moreover, empiri-
cal benchmarks in Section 4 demonstrate that CRT-logit performs better than related
statistical inference methods, such as the Debiased Lasso or Model-X Knockoffs. In
particular, CRT-logit is the most powerful method in our synthetic experiment with
high-dimensional datasets in Section 4.2, while still keeping FDR controlled under pre-
defined level α = 0.1.

We note that there exists some limitations to CRT-logit. The computational cost of
CRT-logit, while lower than vanilla CRT, is still larger than alternative methods such as
Knockoff Filter and Holdout Randomization Test. Moreover, tuning the `1−regularization
λdx parameter by cross-validation, as is often done, can further increase the computa-
tional cost of CRT-logit (and dCRT).

Despite this, our empirical benchmarks on both simulated and real data show real
promises of CRT-logit. Henceforth, we believe CRT-logit is competitive for practical
settings that involve structured data, such as brain-imaging and genomics applications.
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Appendix A: Proofs of theoretical results in Section 3

We first present some technical lemmas that are useful for the proof of the main theorem.
From now on, let - and % denote inequalities with a hidden constant factor, i.e. x - y
means that with high probability, there exists an absolute constant C > 0 such that
x ≤ Cy, and vice versa. As mentioned in the main text, in what follows, without writing
it explicitly, we consider p = p(n).
Lemma A.1 (Lemma E.1, Ning and Liu (2017)). Assume Assumption ??, under the
logistic model, we have

‖β̂ − β0‖1 - s∗
√

log p
n

and ‖β̂ − β0‖2 -

√
s∗ log p
n

,

where s∗ = ‖β0‖0. In addition, we also have

1
n

n∑
i=1

g′′(Xi,∗β
0)[Xi,−j(β̂ − β0)]2 -

s∗ log(p)
n

,

where g(x) = 1/(1 + exp(x)) is the sigmoid function.
Lemma A.2 (Lemma E.2 Ning and Liu (2017), concentration of the gradient and
Hessian of the logistic loss function). Assume Assumption ?? holds, under logistic model,
we have, with v∗ def.= (1,−w0,j) ∈ Rp,

‖∇`(β0)‖∞ -
√
n−1 log p, and

‖v∗>∇2`(β0)− Eβ0 [v∗>∇2`(β0)]‖∞ -
√
n−1 log p.

Lemma A.3 (Lemma E.3, Ning and Liu (2017)). Assume Assumption ?? holds, under
logistic model, we have

‖β̂dX∗,j −w0,j‖1 - (s′ ∨ s∗)
√

log p
n

,

where s∗ = ‖β0‖0 and s′ = ‖w0,j‖0. In addition, we also have

1
n

n∑
i=1

g′′(Xi,∗β̂)[Xi,−j(β̂dX∗,j −w0,j)]2 -
(s′ ∨ s∗) log(p)

n
.

Lemma A.4 (Lemma E.4, Ning and Liu (2017), local smoothness conditions on the
loss function). Let β̂null = (0, β̂−j) ∈ Rp, where β̂ is an estimator of β0. It holds that

v∗>[∇`(β)−∇`(β0)−∇2`(β0)(β − β0)] - (s∗ ∨ s′) log p
n

,

(v̂− v∗)>[∇`(β)−∇`(β0)] - (s∗ ∨ s′) log p
n

.

for both β = β̂null and β = β̂.
Proof of Theorem 3.1. The following proof is an adaptation from Ning and Liu (2017).
Notice that our version of the proof is shorter, with specific consideration on sparse
logistic regression, and with elaboration on the convergence rate of the decorreleated
test score, which is missing from Ning and Liu (2017).

Denote v̂ def.= (1, (β̂dX∗,j )>), then the decorrelated test score can be written in more
general from as

T decorr
j = n1/2Î−1/2

j|−j

(
∇j`(β̂)− (β̂dX∗,j )>∇β−j `(β̂)

)
= n1/2Î−1/2

j|−j v̂>∇`(β̂) . (14)

Moreover, denote β̂null def.= (0, β̂−j) and v∗ def.= (1,w0,j), then we have, under the null
hypothesis,

n1/2|v̂>∇(β̂null)− v∗>∇`(β0)| ≤ n1/2|v∗>{∇`(β0)−∇`(β̂null)}|︸ ︷︷ ︸
A1

+n1/2|(v̂− v∗)>∇`(β̂null)|︸ ︷︷ ︸
A2



Nguyen, Thirion, Arlot/CRT-logit 16

where we use triangle inequality with the last step. By Taylor expansion, and from
Lemma A.4, we have

A1 ≤ n1/2|v∗>∇2`(β0)(β̂null − β0)|
≤ n1/2‖β̂null − β0‖1‖v∗>∇2`(β0)‖∞

-
s∗ log(p)√

n

where the second inequality is by Holdër inequality, and the last inequality us due to
Lemma A.1 and A.2. Similarly, we can bound A2, by using Lemma A.3 and Lemma A.4

A2 ≤ n1/2|(v̂− v∗)>∇`(β0)|

≤ n1/2‖v̂− v∗‖1‖∇`(β0)‖∞ -
(s∗ ∨ s′) log p

n

This implies that,

n1/2|v̂>∇(β̂null)− v∗>∇`(β0)| - n−1/2(s∗ ∨ s′) log(p) . (15)

The remaining part of the proof is to bound Îj|−j − Ij|−j , where, by definition

Ij|−j = E
{
g′′(Xi,∗β

0)
[
Xi,j −Xi,−jw0,j] Xi,j

}
Evaluating the difference between Îj|−j and Ij|−j gives

Îj|−j - Ij|−j

= 1
n

n∑
i=1

g′′(Xi,∗β̂)
[
Xi,j −Xi,−jβ̂

dX∗,j

]
Xi,j−E

{
g′′(Xi,∗β

0)
[
Xi,j −Xi,−jw0,j] Xi,j

}
=
(

1
n

n∑
i=1

g′′(Xi,∗β̂)X2
i,j − E

{
g′′(Xi,∗β

0)X2
i,j

})

+
(

1
n

n∑
i=1

g′′(Xi,∗β̂)Xi,−jβ̂
dX∗,j Xi,j − E

{
g′′(Xi,∗β

0)Xi,−jw0,j Xi,j

})

≤

(
1
n

n∑
i=1

g′′(Xi,∗β̂)X2
i,j − E

{
g′′(Xi,∗β

0)X2
i,j

})
︸ ︷︷ ︸

C

+
∣∣∣∣∣ 1n

n∑
i=1

g′′(Xi,∗β̂)Xi,−j(β̂dX∗,j −w0,j) Xi,j

∣∣∣∣∣︸ ︷︷ ︸
B1

+
∣∣∣∣∣ 1n

n∑
i=1

[g′′(Xi,∗β
0)− g′′(Xi,∗β̂)]Xi,−jw0,j Xi,j

∣∣∣∣∣︸ ︷︷ ︸
B2

+

∣∣∣∣∣ 1n
n∑
i=1

g′′(Xi,∗β
0)Xi,−jw0,j Xi,j − E

{
g′′(Xi,∗β

0)Xi,−jw0,j Xi,j

}∣∣∣∣∣︸ ︷︷ ︸
B3

,

where the last step follows triangle inequality.
We have, by Cauchy-Schwartz inequality, by Lemma A.3, and by the fact that g′′(x) ∈

(0, 1) for every x ∈ R; and Xi,−j , Xi,j is sub-exponential by Assumption 3.1:

B1 ≤

√√√√( 1
n

n∑
i=1

g′′(X>i,∗β̂)((β̂dX∗,j −w0,j)>Xi,−j)2

)(
1
n

n∑
i=1

g′′(X>i,∗β̂)X2
i,j

)

-

√
(s∗ ∨ s′) log(p)

n
.
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Similarly, to bound B2, we have, again by Cauchy-Schwartz inequality,

B2 ≤

√√√√ 1
n

n∑
i=1

[g′′(Xi,∗β0)− g′′(Xi,∗β̂)]2 (Xi,−jw0,j Xi,j)2

≤

√√√√ 1
n

n∑
i=1

[g′′(Xi,∗β0)Xi,∗(β̂ − β0)]2 (Xi,−jw0,j Xi,j)2
,

where the second inequality comes from using the self-concordance property of the sig-
moid function (discussed at length in Bach (2010) and extended further in Ostrovskii
and Bach (2021)), that is, |g′′(t1)− g′′(t)| ≤ |t1 − t|g′′(t) for a fixed constant t, and for
every t1 ∈ R such that t1 converges to t, with t1 = β̂, and t = β0. By Assumption 3.1-A3
that Xi,j is sub-exponential, applying Bernstein inequality leads to

B2 -

√
s∗ log p
n

.

To boundB3, by direct application of Hoeffding inequality, we haveB3 -

√
(s∗ ∨ s′) log p

n
.

This implies

|Îj|−j − Ij|−j | -
√

(s∗ ∨ s′) log p
n

. (16)

Putting Equation (15) and (16) together, we have, under null hypothesis,

T decorr
j

D−→ n1/2 I−1/2
j|−j v∗>∇`(β0) def.= T ∗j ,

with convergence rate O(n−1/2). Finally, by noting that we can decompose ∇`(β0) =
1
n

∑n
i=1∇`i(β0), and each `i(β0) has bounded first, second, and third moment, a direct

application of Berry-Esseen theorem give convergence in distribution of T ∗j to a standard
normal law, with rate O(n−1/2).

We also arrive at the second conclusion of Theorem 3.1 by noting that it is a straight-
forward by-product of the result on normality of the distribution of decorrelated test
score under null hypothesis, based on the formula for the p-values of CRT-logit algo-
rithm.

Proof of Theorem 3.2. The proof of this theorem is a straightforward adaptation from
Benjamini and Yekutieli (2001). For shorter notation, we denote Ŝ def.= ŜBY-CRT and
k̂

def.= k̂BY . If we denote ᾱ def.= α

p
∑p
i=1 1/i ∈ (0, 1), then step 1 in the procedure defined

in Definition B.2 is equivalent with finding k̂ such that

k̂ = max
{
k ∈ [p] | p̂(k) ≤ kᾱ

}
. (17)

For every i, j, k ∈ [p], let us define

pi,j,k =
{
P
(
p̂i ∈ ((j − 1)ᾱ, jᾱ] , i ∈ Ŝ and |Ŝ| = k

)
if j ≥ 2

P
(
p̂i ∈ [0, ᾱ] , i ∈ Ŝ and |Ŝ| = k

)
if j = 1.

(18)

Then, since i ∈ Ŝ and |Ŝ| = k implies that p̂i ≤ p̂k̂ ≤ k̂ᾱ = kᾱ, we have

|Ŝ ∩ Sc|
|Ŝ| ∨ 1

=
p∑
k=1

1|Ŝ|=k

∑
i∈Sc 1i∈Ŝ
k

=
∑
i∈Sc

p∑
k=1

1
k
1|Ŝ|=k and i∈Ŝ

=
∑
i∈Sc

p∑
k=1

1
k
1|Ŝ|=k and i∈Ŝ and 0≤p̂i≤kᾱ

.
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Taking an expectation and writing that

10≤p̂i≤kᾱ = 1
p̂i∈[0,ᾱ] +

k∑
j=2

1
p̂i∈((j−1)ᾱ,jᾱ] ,

we get

E

[
|Ŝ ∩ Sc|
|Ŝ| ∨ 1

]
=
∑
i∈Sc

p∑
k=1

1
k

k∑
j=1

pi,j,k =
∑
i∈Sc

p∑
j=1

p∑
k=j

1
k
pi,j,k

≤
∑
i∈Sc

p∑
j=1

p∑
k=j

1
j
pi,j,k =

p∑
j=1

1
j

∑
i∈Sc

p∑
k=j

pi,j,k︸ ︷︷ ︸
A

.

Denote F (j) def.=
∑
i∈Sc

∑j
j′=1

∑p
k=1 pi,j′,k for all j ∈ {1, . . . , p}, and remark that

pi,j′,k = 0 if j′ > k, by definition of ŜBY-CRT. We then have

A = F (1) +
p∑
j=2

1
j

[
F (j)− F (j − 1)

]
=

p−1∑
j=1

(
1
j
− 1
j + 1

)
F (j) + F (p)

p
.

This leads to

E

[
|Ŝ ∩ Sc|
|Ŝ| ∨ 1

]
≤

p−1∑
j=1

(
1
j
− 1
j + 1

)
F (j) + F (p)

p
(19)

By the definition of pi,j,k in Eq. (18), we have

F (j) =
∑
i∈Sc

P(p̂i ≤ jᾱ and i ∈ Ŝ) ≤
∑
i∈Sc

P(p̂i ≤ jᾱ).

Therefore

E

[
|Ŝ ∩ Sc|
|Ŝ| ∨ 1

]
≤
∑
i∈Sc

p−1∑
j=1

P(p̂i ≤ jᾱ)
j(j + 1) +

∑
i∈Sc

P(p̂i ≤ pᾱ)
p

Taking the limit where n→∞ and p fixed, we have, using the result in Theorem 3.1,

lim sup
n→∞

E

[
|Ŝ ∩ Sc|
|Ŝ| ∨ 1

]
≤
∑
i∈Sc

p−1∑
j=1

1
j + 1 + 1

 ᾱ

=

 p∑
j=1

1
j

 |Sc|ᾱ .
We conclude the proof by noting that ᾱ def.= α

p
∑p
j=1 1/j .

Appendix B: Controlling False Discovery Rate Procedures

Definition B.1 (Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995)). Let
α ∈ (0, 1) be the predefined FDR control level. Let p̂1, . . . , p̂m be output p-values from
inference algorithm, e.g. Algorithm 1. We reorder them ascendingly, denoted by p̂(1) ≤
p̂(2) ≤ · · · ≤ p̂(p) and H(1)

0 , . . . ,H(p)
0 , then

1. Find k̂BH such that

k̂BY = max
{
k ∈ [p] | p̂(k) ≤

kα

p

}
.

2. If k̂BH exists, take Ŝ = {j ∈ [p] : p̂(j) ≤ p̂k̂BH
}. Otherwise Ŝ = ∅.
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Definition B.2 (Benjamini-Yekutieli procedure (Benjamini and Yekutieli, 2001)). Let
α ∈ (0, 1) be the predefined FDR control level. Let p̂1, . . . , p̂m be output p-values from
Algorithm 1. We reorder them ascendingly, denoted by p̂(1) ≤ p̂(2) ≤ · · · ≤ p̂(p) and
H(1)

0 , . . . ,H(p)
0 , then

1. Find k̂BY such that

k̂BY = max
{
k ∈ [p] | p̂(k) ≤

kα

p
∑p
i=1 1/i

}
.

2. If k̂BY exists, take Ŝ = {j ∈ [p] : p̂(j) ≤ p̂k̂BY
}. Otherwise Ŝ = ∅.

Appendix C: Setting the `1−Regularization Parameter of the
X∗,j-distillation

A core issue is the dependency of the statistical power and FDR of CRT-logit on the `1−
regularization parameter λdx when doing Lasso distillation on xj in Eq. (10). One might
choose the heuristic value λuniv =

√
n−1 log p with theoretical validity, as suggested in

Ning and Liu (2017); van de Geer et al. (2014). However, experimental results in Fig. 5
show that at λdx = λuniv (or log10 λ/λuniv = 0.0 with the labeling of the figure), we do
not have the best possible FDR/Power with CRT-logit inference. For this experiment,
we average the inference results of 100 simulations (with similar setting in Section 4.1)
for different values of n and λdx, with p fixed. There is a clear phase transition in
both FDR and average power when the regularization parameter λdx increases. In other
words, we have found empirically that both FDR and power of the method are sensitive
to the `1−regularization parameter. Preferably, one wants to return a high statistical
power while controlling FDR under predefined level. Hence, it is necessary to choose λdx
wisely. In a more practical scenario, we advise to use cross-validation for X∗,j-distillation
operator, as defined by Eq. (10). This means we would have to find p different values of
λdx with cross-validation, and we reemphasize the importance of the screening step to
reduce the number of computations.

-2.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
log10 λ/λuniv

12
00

80
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0

40
0
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0
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0

No
. S
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es
 (n

)

0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.011 0.035 0.055 0.072 0.095

0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.017 0.042 0.057 0.076 0.098

0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.026 0.049 0.064 0.082 0.102

0.000 0.000 0.000 0.000 0.000 0.001 0.010 0.034 0.055 0.071 0.093 0.102

0.000 0.000 0.000 0.000 0.000 0.005 0.023 0.049 0.063 0.082 0.101 0.102

0.000 0.000 0.000 0.000 0.001 0.013 0.040 0.055 0.074 0.096 0.102 0.102

FDR, α= 0.1

-2.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
log10 λ/λuniv

0.000 0.000 0.001 0.007 0.023 0.072 0.204 0.413 0.595 0.708 0.753 0.791

0.000 0.000 0.002 0.012 0.033 0.106 0.269 0.486 0.648 0.726 0.767 0.798

0.000 0.001 0.004 0.016 0.044 0.134 0.327 0.532 0.674 0.737 0.780 0.800

0.000 0.001 0.007 0.023 0.070 0.195 0.403 0.587 0.706 0.752 0.790 0.799

0.000 0.002 0.015 0.043 0.128 0.315 0.523 0.670 0.735 0.778 0.800 0.799

0.001 0.008 0.028 0.085 0.232 0.450 0.620 0.717 0.757 0.795 0.799 0.799

Avg. Power

Figure 5: FDR/Average Power of 100 runs of simulations while varying the
number of samples and `1 regularization parameter and fixing the number
of variables. Note: λdx is scaled with the factor λuniv =

√
log(p)/n, e.g. the first

value for regularization grid is λdx = 10−2λuniv. Default parameter (similar settings in
Section 4.1): p = 400, SNR=3.0 (signal-to-noise ration), ρ = 0.5 (feature correlation),
κ = 0.05 (sparsity). FDR is controlled at level α = 0.1.

Appendix D: Pseudocode for CRT-logit and Related Algorithms

Appendix E: Time complexity of Related Methods

We present the time complexity of benchmarked methods in Table 3.
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Algorithm 2: Conditional Randomization Test (Candès et al., 2018)
1 INPUT dataset (X,y), with X ∈ Rn×p, y ∈ Rn, number of sampling runs B, test

statistic Tj , conditional distribution Pj|−j for each j = 1, . . . , p ;
2 OUTPUT vector of p-values {p̂j}pj=1;
3 for j = 1, 2, . . . , p do
4 Compute test statistics Tj for original variable;
5 for b = 1, 2, . . . , B do
6 1. Generate X̃(b)

∗,j , a knockoff sample from Pj|−j ;
7 2. Compute T̃ (b)

j for knockoff variables;
8 end
9 Compute the empirical p-value

p̂j =
1 +

∑B

b=1 1
T̃

(b)
j
≥Tj

1 +B

10 end

Algorithm 3: Lasso-Distillation Conditional Randomization Test (Liu et al.,
2021)

1 INPUT dataset (X,y), X ∈ Rn×p, y ∈ Rn, test statistic Tj for each j = 1, . . . , p;
2 OUTPUT vector of p-values {pj}pj=1;
3 ŜSCREENING = {j : j ∈ [p], β̂MLE

j 6= 0} // Using Eq. (2)
4 for j ∈ ŜSCREENING do
5 1. Distill information of X−j to X∗,j and to y by finding:

• β̂dy,j(λ)← solve_sparse_logistic_cv(X−j ,y) // Using Eq. (2)

• β̂
dX∗,j (λ) = argminβ∈Rp−1

1
2 ‖X∗,j −X−jβ‖2

2 + λdx ‖β‖1 // with λdx set using

cross-validation

2. Obtain test statistic:

Tj =
√
n
〈y−X−jβ̂dy,j ,X∗,j −X−jβ̂dX∗,j 〉∥∥y−X−jβ̂dy,j

∥∥
2

∥∥∥X∗,j −X−jβ̂dX∗,j

∥∥∥
2

3. Compute (two-sided) p-value

p̂j = 2 [1− Φ (Tj)]

6 end

Appendix F: Additional Details on Experiments in Section 4

F.1. Preprocessing of the brain-imaging dataset

The Human Connectome Project dataset (HCP) is a collection of brain imaging data on
healthy young adult subjects with age ranging from 22 to 35. The participants performed
different tasks while being scanned by a magnetic resonance imaging (MRI) device to
record blood oxygenation level dependent (BOLD) signals of the brain. The aim of this
analysis is to investigate which areas of the brain can predict cognitive activity across
participants, while taking into account the information from other brain regions. The
brain imaging modalities include, among others, resting-state fMRI (R-fMRI) and task-
evoked fMRI (T-fMRI). In this work, we only deal with decoding the task-evoked fMRI
dataset. The four classification problems we are working with are as follows.

• Relational: predict whether the participant matches figures or identified feature
similarities.

• Gambling: predict whether the participant gains or loses gambles.
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Algorithm 4: Holdout Randomization Test (Tansey et al., 2022)
1 INPUT dataset (X,y), with X ∈ Rn×p, y ∈ Rn, number of sampling runs B, test

statistic Tj , conditional distribution Pj|−j for each j = 1, . . . , p, empirical risk L(·) ;
2 OUTPUT vector of p-values {p̂j}pj=1;
3 (Xtrain,ytrain), (Xtest,ytest)← data_splitting(X,y);
4 f̂θ ← model_fitting(Xtrain,ytrain);
5 for j = 1, 2, . . . , p do
6 Tj ← L(Xtest,ytest, f̂θ(Xtest));
7 for b = 1, 2, . . . , B do
8 1. Generate X̃(b)

∗,j ∼ Pj|−j ;
9 2. T̃ (b)

j ← L(X̃(b)
∗,j ,ytest, f̂θ(X̃(b)

∗,j));
10 end
11 Compute the empirical p-value

p̂j =
1 +

∑B

b=1 1
T̃

(b)
j
≥Tj

1 +B

12 end

Table 3
Time complexities of related methods with CRT-logit, where p is the dimension size (number of
variables), B is the number of sampling runs, and k̂ � p the cardinality of the screening set (see

Section D for more details).

Methods Time (Iteration)
Complexity

References

Debiased Lasso O(p4) Zhang and Zhang (2014); van de Geer et al.
(2014); Javanmard and Montanari (2014)

Knockoff Filter O(p3) Barber and Candès (2015); Candès et al.
(2018)

CRT O(Bp4) Candès et al. (2018)
HRT O(p3 +Bp2) Tansey et al. (2022)
dCRT (with screening ) O(k̂p3) Liu et al. (2021)
CRT-logit (with screening) O(k̂p3) (this work)

• Emotion: predict whether the participant watches an angry face or a geometric
shape.

• Social: predict whether the participant watches a movie with social behavior or
not.

To perform dimension reduction, our goal is to apply a clustering scheme that keeps the
spatial structure of the data. This is achieved with data-driven parcellation along with
a spatially constrained clustering algorithm, following the conclusions by Varoquaux
et al. (2012) and Thirion et al. (2014). The hierarchical clustering scheme that we use
recursively merges pair of clusters of features based on a criterion that minimized the
within-cluster variance. This algorithm is implemented in scikit-learn Pedregosa et al.
(2011), a popular package for applied machine learning.

Appendix G: Example of decoding maps in semi-realistic brain-analysis
experiment of Section 4.3
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(a) Debiased Lasso (dlasso)

L R L R

(b) Knockoffs (KO)

L R L R

(c) CRT (CRT), B = 500

L R L R

(d) Distilled-CRT (dCRT)

L R L R
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(e) CRT-logit (our method)

Figure 6: Decoding maps of Relational task in semi-realistic HCP900 experi-
ment, using 400 subjects and dimension reduction to 1000 clusters (i.e. one
random seed for generating labels y). We omit Holdout Randomization Test (HRT)
as the method does not select any brain region. For dlasso, dCRT and CRT-logit, we
plot the test-statistics; for KO the sign of selected coefficients, and for CRT the −log10 of
the empirical p-values.
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