Learning on Graphs

Mark Coates

Department of Electrical and Computer Engineering

McGill University

Time-series

Why Bayes?

- Incorporate prior knowledge (learn from less data + active learning)
- Handle missing data (or noisy data)
- Confidence intervals \rightarrow prediction intervals

Why Graphs?

Bayesian Graph Neural Networks

• Employ Bayesian framework to account for uncertainty in the graph

Bayesian Graph Neural Networks

$$p(\mathbf{Z}|\mathbf{Y}_{\mathcal{L}}, \mathbf{X}, \mathcal{G}_{obs}) = \int p(\mathbf{Z}|W, \mathcal{G}, \mathbf{X}) p(W|\mathbf{Y}_{\mathcal{L}}, \mathbf{X}, \mathcal{G}) p(\mathcal{G}|\lambda) p(\lambda|\mathcal{G}_{obs}) dW d\mathcal{G} d\lambda,$$

$$\approx \frac{1}{V} \sum_{v=1}^{V} \frac{1}{N_G S} \sum_{i=1}^{N_G} \sum_{s=1}^{S} p(\mathbf{Z}|W_{s,i,v}, \mathcal{G}_{i,v}, \mathbf{X})$$

 $p(G|\lambda)$: Assortative mixed membership stochastic block model

Bayesian Graph Neural Networks

Maximum a posteriori estimate of adjacency matrix using non-parametric graph model

Graph-based Recommender Systems

Graph-based Recommender Systems

>500 million users, >200,000 apps

Online A/B Test in Ten Days in App store Rec. On average 10+% improvement over CTR/CVR

Bayesian Approach

1. Sampling $G_1, ..., G_k$ with node copying

- Graph is extremely sparse
- Diversity is a problem
- Use Bayesian GCNs to promote information diffusion and diversity

Multiple Instance Learning

Assign labels to bags (sets of instances), rather than individual instances

- Instance-based approaches:
 - Label instances then pool
- Bag-space approaches
 - Learn mapping from bag descriptor to label

Proposed Architecture

Goal: approximate posterior of unknown labels conditioned on training labels and bag features.

Key innovation: Use a graph to model relationships between the bags

MIL Experiments: Election result prediction

Given demographic data from US census per county and some voting results, can we predict how the rest of the country will vote?

Dataset source:

Flaxman et al. "Understanding the 2016 US Presidential Election using ecological inference and distribution regression with census microdata", arXiv 2016

Instances: sampled voters for each county

Features: census data

Bags: counties

MIL Experiments: Election result prediction

Electronic Design Automation (EDA) Workflow

- Register Transfer Level (RTL) design: VDHL/Verilog
- models a synchronous digital circuit in terms of
 - flow of signals between hardware registers
 - logical operations performed on signals

Convert to physical layout through logic synthesis
 & physical design

Electronic Design Automation (EDA) Workflow

Logic synthesis

- Convert to a netlist: contains interconnection information of all circuit elements
- Cells: groups of transistors & interconnects that provide a Boolean logic function

Physical design

All circuit elements placed on circuit boards
 & connected by wires

Routing Congestion

- Routing congestion: important metric that reflects the quality of the chip design
- Most EDA tools: congestion predicted AFTER cell placement
- Used as a feedback signal to optimize placement solution

Routing Congestion

- Routing congestion: important metric that reflects the quality of the chip design.
- Most EDA tools: congestion predicted AFTER cell placement
- Used as a feedback signal to optimize placement solution

Problems:

- Large scale circuits placement iteration is computationally expensive
- Some congestion caused by poor logic structures cannot be fixed by placement

Routing Congestion

- Goal: Estimate logic-induced congestion at logic synthesis stage
- Provide quick feedback and shorten design cycles.
- Map to node regression task
 - Train on one set of netlists (graphs)
 - Predict on another set of netlists

Challenge: embedding consistency

- Goal is to learn a structural embedding for each node
- Embeddings learned on one graph cannot be directly used in another distinct graph
- Need to perform alignment inconsistent performance
- Our approach: factorization of Pointwise Mutual Information matrices XX^T
- PMT is rotation invariant

• Obtain PMT via an "infinite" version of DeepWalk

Method – Training and inference

Results – Prediction

Ground truth congestion map.

Predicted congestion map

Results – Prediction Accuracy

	Lower level congestion					
Methods	Pearson		Spearman		Kendall	
	Node	Grid	Node	Grid	Node	Grid
Adhesion metric	0.09	0.16	0.06	0.20	0.06	0.14
Neighbourhood metric	0.02	0.04	0.18	0.27	0.13	0.18
GTL metric	0.02	0.01	0.14	0.23	0.10	0.16
CongestionNet	0.26	0.35	0.27	0.33	0.19	0.24
Embedding-enhanced GNN (ours)	0.31	0.43	0.34	0.44	0.25	0.31

Open questions and areas of exploration

- Scalability particularly for Bayesian or quasi-Bayesian approaches
- Continual, multi-task and streaming learning

Open questions and areas of exploration

- Large language models which graph tasks can be reformulated? Cost/benefit trade-off?
- SAT problems graph representations of the problem and software
- Categorical sequence and graph generative models and evaluation

Florence Regol

Soumya Pal

Antonios Valkanas

Yingxue Zhang

Jianing Sun