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* Incorporate prior knowledge (learn from less data + active learning)

* Handle missing data (or noisy data)

Why Bayes!

* Confidence intervals — prediction intervals
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Bayesian Graph Neural Networks

True graph Graph corruption Observed graph

* Employ Bayesian framework to account for uncertainty in the graph



Bayesian Graph Neural Networks
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Zhang, Pal, Coates, Ustebay, AAAI 2019



Bayesian Graph Neural Networks

Maximum a posteriori estimate of adjacency matrix using non-parametric graph model
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Graph-based Recommender Systems

Pairwise BPR loss
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Sun et al. SIGIR 2020, KDD 2021



Graph-based Recommender Systems

>500 million users, >200,000 apps

& Action games
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Bayesian Approach

G * Graph is extremely sparse
=Y * Diversity is a problem
%‘3 ~’

* Use Bayesian GCNs to promote
information diffusion and diversity

l g obs

1. Sampling Gy, ..., Gk with node copying Sun et al. SIGIR 2020, KDD 2020



Multiple Instance Learning

Assign labels to bags (sets of instances), rather than individual instances

Can enter the room

* Instance-based approaches:

Can I enter the room?
* Label instances then pool \ K “

* Bag-space approaches

Cannot enter the room
* Learn mapping from bag
descriptor to label

Pal,Valkanas, Regol, Coates AAAI 2022




Proposed Architecture
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Goal: approximate posterior of unknown labels conditioned on training labels and bag features.

Key innovation: Use a graph to model relationships between the bags



MIL Experiments: Election result prediction

Given demographic data from US census per county and some voting results, can we
predict how the rest of the country will vote!?

Dataset source:

Flaxman et al.“Understanding the 2016 US Presidential Election using ecological inference
and distribution regression with census microdata”, arXiv 2016

Instances: sampled voters for each county
Features: census data

Bags: counties



Election result prediction
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Electronic Design Automation (EDA) Workflow

* Register Transfer Level (RTL) design: VDHL/ Verilog

* models a synchronous digital circuit in terms of
* flow of signals between hardware registers

* logical operations performed on signals

* Convert to physical layout through logic synthesis
& physical design

Logic Synthesis

A 4

Physical Design

--------------

-------------

Congestion]




Electronic Design Automation (EDA) Workflow

* Logic synthesis

e Convert to a netlist: contains interconnection
information of all circuit elements

* Cells: groups of transistors & interconnects ' ¥
that provide a Boolean logic function Logic Synthesis Ef E r
: :

-------------

* Physical design

\ 4

Physical Design Dlaceme

* All circuit elements placed on circuit boards

Congestion
& connected by wires | 0 - . ]




Routing Congestion

* Routing congestion: important metric that reflects the quality of the chip design

* Most EDA tools: congestion predicted AFTER cell placement

-------------

* Used as a feedback signal to optimize ' Nefiist

placement solution
Logic Synthesis ' r

-------------

\ 4

Physical Design

Congestion]
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Routing Congestion

* Routing congestion: important metric that reflects the quality of the chip design.

* Most EDA tools: congestion predicted AFTER cell placement

* Used as a feedback signal to optimize

placement solution
Logic Synthesis ' r
il Ji

-------------

Problems: sorolanning

\ 4

* Large scale circuits - placement iteration is Physical Design Dlaceme
computationally expensive

Congestion]

* Some congestion caused by poor logic
structures cannot be fixed by placement




Routing Congestion

* Goal: Estimate logic-induced congestion at logic synthesis stage

* Provide quick feedback and shorten design cycles.

. . Nefist .+ structural Embedding
* Map to node regression task : \  Augmented GNN
Logic Synthesis ' ; ¢
* Train on one set of netlists (graphs) : ; [Congesﬁonj
1 I
* Predict on another set of netlists I
Y
Physical Design Placeme
el - Congestion
UL —iR : ]
. ] .
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Challenge: embedding consistency

Goal is to learn a structural embedding for each node

Embeddings learned on one graph cannot be directly used in another distinct graph
Need to perform alignment — inconsistent performance

Our approach: factorization of Pointwise Mutual Information matrices XX’

PMT is rotation invariant » no alignment necessary

Obtain PMT via an “infinite” version of DeepWValk

Ghose et al., ICCAD 2021



Method — Training and inference
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Results — Prediction

Ground truth congestion map. Predicted congestion map



Results — Prediction Accuracy

Lower level congestion

Methods Pearson Spearman Kendall
Node | Grid | Node | Grid | Node | Gnd
Adhesion metric 0.09 0.16 | 0.06 0.20 | 0.06 0.14
Neighbourhood metric 0.02 0.04 | 0.18 0.27 | 0.13 0.18
GTL metric 0.02 0.01 | 0.14 0.23 | 0.10 0.16
CongestionNet 0.26 0.35 | 0.27 0.33 | 0.19 0.24
Embedding-enhanced GNN (ours) | 0.31 0.43 | 0.34 0.44 | 0.25 0.31




Open questions and areas of exploration

 Scalability — particularly for Bayesian or quasi-Bayesian approaches

e Continual, multi-task and streaming learning

Dopamine
HO NH,
HOD/\/
Molecular graph
Node classification Screen graph Molecule
extraction classification

User-Item Interaction Graph

27



Open questions and areas of exploration

e Large language models — which graph tasks can be reformulated? Cost/benefit trade-off?
* SAT problems — graph representations of the problem and software

» Categorical sequence and graph generative models and evaluation

Antonios Yingxue Jianing
Valkanas Zhang Sun

Florence
Regol




