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2) Recent Research:
– unsupervised domain adaptation 
– cross-modal recognition 
– weakly-supervised object localization
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Research Interests

• machine learning – domain adaptation, incremental and 
weakly-supervised learning

• computer vision 
• pattern recognition in static and dynamically-changing 

environments
• information fusion
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Figure 2: Our proposed CTVAE pipeline consists of two steps: a context-adaptive trans-
former (CT) network, and a Texture Enhancement network (TENet). The CT network de-
tects lost instances and damaged regions in the input image, generating appearance priors
through sampling. The TENet then uses these appearance priors, along with the CT output,
to generate high-quality and natural-looking outputs. It achieves this through a combination
of Down/Up ResNet blocks, Feature Synthesis, and TE modules.

ble instances but also ensure that the constructed instances flawlessly match the rest of the
image. Our CTVAE model addresses this problem in two steps. First, our context-adaptive
transformer (CT) is used to reconstruct the masked image by determining a contextually rel-
evant instance. This is achieved by adapting the object detection with Detection Transformer
(DETR) [3] to identify the missing instances. Second, the reconstructed and masked im-
ages are fed to another CNN (TENet), which uses appearance priors and unmasked pixels
to replenish texture details and convert the masked input into a realistic image. The CTVAE
pipeline is shown in Figure 2, and the algorithm is described in the Suppl. materials.

(A) Predicting Missed Instances: CTVAE uses the pre-trained DETR model [3] to predict
the classes of instances and determines the relationships between objects and content in a
given scene. The original (non-masked) image is denoted by x, while the masked image is
represented by xm. Let P = [p1, ..., pi] and c = [c1, ...,ci]> be the bounding box (BB) coor-
dinates and object classes of the visible instances, respectively, that are extracted from the
segmentation map SM = DET R(xm), and i is the expected number of instances. The CT net-
work uses extracted object classes c to create learnable input tokens. These tokens are then
concatenated with the tokens for the masked region to form the input sequence for the trans-
former. The transformer generates a probability distribution over the possible classes for the
missing context yout , based on the available context yin and the masked region. The class
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Video Analytics and Surveillance: 
• real-time object detection, tracking, 

re-identification and fusion
• face analysis and recognition

Affective Computing in Healthcare: 
• spatio-temporal expression recognition 
• A-V fusion of facial and vocal modalities

Analysis of Medical Images
• breast cancer grading and 

localization in histology

Application Areas

Graphical Abstract

Deep Weakly-Supervised Learning Methods for Classification and Localization in Histology Im-

ages

Jérôme Rony, Soufiane Belharbi, Jose Dolz, Ismail Ben Ayed, Luke McCa�rey, Eric Granger

Graphical Abstract (for review) Click here to access/download;Graphical Abstract (for
review);gb.pdf

Objective 3: Use Machine Learning to Guide 
Molecular Analysis of Cancer Development

INPUT: DCIS images

Progression?
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Convolutional and recurrent neural networks

Imaging Mass Cytometry
(32 markers)

Markers for: 
• cell growth, 
• survival, 
• immune system, 
• surrounding microenvironment

Analyze relationships 
between markers using 

nerural networks

Hot-spot zones
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Video Analytics & Surveillance – Detection & Tracking

Front-end processing: joint detection and tracking of multiple objects 
appearing in a video camera, and output tracklets

Adaptive Siamese FC networks for tracking with change detection

T. Wang et al., Dynamic Template Selection Through Change Detection for Adaptive Siamese Tracking, IJCNN 2022.
Zhang, Y., et al., FairMOT: On the fairness of detection and re-identification in multiple object tracking. IJCV 2021.

ing due to changes over time in object appearance. These
trackers locate object by finding maximum score location
in the output heat map. Hence, when appearance changes
abruptly or the object is occluded or partially leaves the
search region, the SiamFC tracker temporarily drifts to a lo-
cation that has a high response map score. Recently, DaSi-
amRPN [18] tracker based on the SiamFC tracking tech-
nique further improved by incorporating distracter aware-
ness has produced state of the art results on various tracking
benchmarks.

Robust tracking can be achieved by combining a deep
detector and tracker. CNN-based object detectors [9] cur-
rently provide state-of-the-art accuracy in object detection.
However, tracks may drift if the bounding boxes provided
by these detector are noisy, due to changes in appearance,
background and occlusion. Moreover, given the computa-
tional complexity of CNN-based detectors, a key to efficient
VOT is the management of detector-tracker interactions. A
deep Siamese tracker for real-time video surveillance appli-
cations should minimize the number of interactions with the
detector for track initiation and update.

In the literature (e.g., [7, 15]), VOT is typically evaluated
by initialising the tracker with an initial ground truth tar-
get bounding box. These bounding boxes are often tightly
bound around the object without much of background noise.
In some evaluation methods, bounding boxes are gener-
ated with random noise to simulate a practical scenario for
tracker initialisation. But these noisy bounding box cannot
fully mimic a real-world scenario.

In this paper, the interaction between deep learning mod-
els for detection and tracking are analysed with a proposed
adaptive tracker. A change detection mechanism is inte-
grated within this Siamese tracker to detect gradual and
abrupt changes in a target’s appearance in each frame based
on features extracted by the deep Siamese network. In re-
sponse to an abrupt change, the tracker triggers the object
detector in order to update an evolving set of templates.
Given a gradual change, templates stored in memory are
applied on the search region, and the resulting response
maps are integrated to locate a precise target. The pro-

Figure 1. Illustration of the tracker-detector interaction to construct
facial trajectories (set of ROIs captured for the same high quality
track) in a video surveillance system. Trajectories can be used for
further processing, like spatio-temporal person recognition.

posed Siamese tracker allows for real-time adaptation of
templates, while avoiding target model corruption.

The performance of our adaptive Siamese tracker is com-
pared against baseline Siamese FC trackers, where tracks
are initialized and updated with ground truth bounding
boxes (ideal object detector) and with the YOLOv3 detec-
tor. They are evaluated over several operating conditions
on video surveillance like cases from OTB-100 [15] bench-
mark where videos contain persons or vehicles.

2. Tracking Objects in Video Surveillance

In video surveillance, VOT consists interacts with an
object detector. Fig. 1 shows an example of the detector-
tracker interactions employed to produce facial trajectories
or tracklets. In this case, the face-head detector initiates a
new track, and defines a new target representation or tem-
plate with an initial bounding box. Then, the tracker gener-
ates ROIs in subsequent frames. The tracker employs local
object detection, learns the object online, and adapts to the
changing object appearance and results in the object’s lo-
cation. The detector can also be used locally (on search
regions) to validate the tracker’s output. Also, in a real-time
surveillance application, the detector searches globally (on
the entire frames), and it is often computationally expen-
sive to call the detector every frame. Objects are tracked
by searching locally and can thereby be very efficient com-
pared to the detector.

The main challenges of VOT in real-time applications
are [2, 13]: (1) tracked objects tend to drift with time due to
continuous integration of noise in the target appearance; (2)
it is difficult to verify a tracker’s state due to lack of relia-
bility in tracker’s confidence; (3) the appearance of targets
change with time; (4) occlusions are difficult to be detected
by the tracker, as there is a risk of learning the occlusion
as a part of the target. Relying on a tracker that is continu-
ously adapting does not guarantee a high-quality trajectory.
Trackers that update their template on every frame assuming
have a high probability of drifting. Outliers filtering may be
employed in order to detect samples that are notably differ-
ent from the actual target, and should be removed.

Siamese Fully-Convolutional (SiamFC) tracker [1] uses
an AlexNet based Siamese network for feature extraction.
The networks takes two input – target template image z and
search image x – where |x| = 2|z|. The embedding ' for
z is hence smaller than that of x. To localize the object,
template features are cross correlated with that of search
features to obtain a score map. The location of the maxi-
mum value in the score map gives the location of the ob-
ject in the search region x. The tracker had been trained on
ILSVRC [11] dataset with a logistic loss function. During
tracking, the correlation map f(z, x) obtained after cross-
correlation of target template embedding '(z) with search
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Fig. 1 Overview of our one-shot tracker FairMOT. The input image is
first fed to an encoder-decoder network to extract high resolution feature
maps (stride = 4). Then we add two homogeneous branches for detect-

ing objects and extracting re-ID features, respectively. The features at
the predicted object centers are used for tracking

Table 1 Comparison of
different re-ID feature extraction
(sampling) strategies on the
validation set of MOT17

Feature Extraction Anchor MOTA↑ IDF1↑ IDs↓ TPR↑

FairMOT (ROI-Align) ! 68.7 71.0 331 93.1

FairMOT (POS-Anchor) ! 69.0 70.3 434 93.9

FairMOT (Center) 69.1 72.8 299 94.4

FairMOT (Center-BI) 68.8 74.3 303 94.9

FairMOT (Two-Stage) ! 69.0 68.2 388 90.5

The rest of the models are kept the same for fair comparison. ↑ means the larger the better and ↓ means the
smaller the better. The best results are shown in bold

2 RelatedWork

The best-performing MOT methods (Bergmann et al. 2019;
Brasó and Leal-Taixé 2020; Hornakova et al. 2020; Yu et al.
2016; Mahmoudi et al. 2019; Zhou et al. 2018; Wojke et al.
2017; Chen et al. 2018a; Wang et al. 2020b; Voigtlaen-
der et al. 2019) usually follow the tracking-by-detection
paradigm, which first detect objects in each frame and then
associate them over time. We classify the existing works into
two categories based on whether they use a single model
or separate models to detect objects and extract association
features. We discuss the pros and cons of the methods and
compare them to our approach.

2.1 Detection and Tracking by Separate Models

2.1.1 Detection Methods

Most benchmark datasets such asMOT17 (Milan et al. 2016)
provide detection results obtained by popular methods such
asDPM (Felzenszwalb et al. 2008), Faster R-CNN (Ren et al.
2015) and SDP (Yang et al. 2016) such that the works that

focus on the tracking part can be fairly compared on the same
object detections. Someworks such asYuet al. (2016),Wojke
et al. (2017), Zhou et al. (2018), Mahmoudi et al. (2019) use
a large private pedestrian detection dataset to train the Faster
R-CNN detector with VGG-16 (Simonyan and Zisserman
2014) as backbone, which obtain better detection perfor-
mance.A small number ofworks such asHan et al. (2020) use
more powerful detectors which are developed recently such
as Cascade R-CNN (Cai and Vasconcelos 2018) to boost the
detection performance.

2.1.2 Tracking Methods

Most of the existing works focus on the tracking part of the
problem. We classify them into two classes according to the
type of cues used for association.

Location and Motion Cues based Methods SORT (Bew-
ley et al. 2016) first uses Kalman Filter (Kalman 1960) to
predict future locations of the tracklets, computes their over-
lap with the detections, and uses Hungarian algorithm (Kuhn
1955) to assign detections to tracklets. IOU-Tracker (Bochin-
ski et al. 2017) directly computes the overlap between the
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Task: Match individuals or objects captured over a distributed 
set of non-overlapping camera viewpoints

Challenges: low resolution, motion blur, occlusions, variation in pose 
and illumination, misalignment over different camera views

Source: T. Wang et al., Person Re-Identification by Video Ranking, ECCV2014.

Video Analytics & Surveillance – Re-Identification
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● Leverage RGB data to improve generalization for object detection in IR
● Fusion for RGB-IR ReID from corrupted multimodal data

Video Analytics and Surveillance – Multimodal Recognition

LLVIP Dataset: A high-resolution RGB/IR dataset for object detection.

Jia, Xinyu, et al. LLVIP: A Visible-Infrared Paired Dataset for Low-Light Vision. ICCV 2021.
Josi, Arthur, et al., Fusion for V-I Person ReID in Real-World Surveillance Using Corrupted Multimodal Data." arXiv 2023.
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Fig. 2: Training architecture of the MMSF model while fusing the features in the middle stream for l=3.
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Fig. 3: Training architecture of the MAN model.

or the element-wise sum of the fV
w and fI

w vectors
through a final softmax layer for classification.

As a consequence of the CL and NCL cam-
era scenarios and the induced spatial alignment,
which might influence the feature vector’s com-
position, we also consider the element-wise sum
fusion of the feature vectors in this work. Con-
catenation conserves each feature definition while
fusing, but doubles the feature vector dimension.
Summation makes the fused vector of the original
feature vector size but may erase knowledge if the
embedded concepts are not aligned.

3.2.2 Multimodal transfer module

The Multimodal Transfer Module (MMTM) (Joze
et al., 2020) is an approach that focuses on chan-
nel attention to refactor the feature maps from
two or more modality CNN streams regarding
the spatial statistics of each. As the refactoring
is done dynamically and based on the statistics
of each given input, such attention should also
be helpful while facing corrupted data. Two sim-
ilar backbones are used to extract the features
from each V and I representation. Two modules

are used for our architecture (Fig. 4), after the
third and the fourth convolution blocks, allowing
for intermediate and high-level feature refactor-
ing. For a given layer l 2 N, the visible and the
infrared modality feature maps are respectively
noted Fl

V 2 RH⇥W⇥C and Fl
I 2 RH⇥W⇥C , with

H 2 R, W 2 R and C 2 R being respectively the
feature maps height, width and channel size. The
feature map from each stream is first squeezed
with a global average pooling layer over the spatial
dimension, leading to two linear vectors of channel
descriptors. Those vectors are concatenated and
passed through a dense layer, following equation
(2), to obtain the joint representation Jl 2 RCJ .

Jl = W([AvgPool(Fl
V); AvgPool(Fl

I)]) + b (2)

where W 2 RCJ⇥C
2

is a weight matrix, b 2 RCJ

the bias of the dense layer, and CJ = C2/4 to limit
the model capacity and increase the generaliza-
tion power (Joze et al., 2020). Then, an excitation
signal is produced with a distinct dense and soft-
max activation layer applied for each modality to
the shared channel descriptor Jl. Finally, this exci-
tation signal is broadcasted through the spatial
dimension for each modality with an element-
wise product, following equations (3), forming the
final weighted feature maps Fl

V
w 2 RH⇥W⇥C and

Fl
I
w 2 RH⇥W⇥C .

Fl
V

w

= 2⇥ �(WVJl + bV)� Fl
V

Fl
I
w

= 2⇥ �(WIJ
l + bI)� Fl

I

(3)

where WV 2 RC⇥CJ and WI 2 RC
0⇥CJ are

weight matrix and bV 2 RC , bI 2 RC the bias of

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

2 AUTHOR(S): BMVC AUTHOR GUIDELINES

Test Phase

Hallucination
Network
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Hallucidet: Hallucinating RGB Modality for Person Detection thought Privileged Information
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Figure 1: HalluciDet leverages privileged information for modality hallucination with pre-
trained detectors. During training, the hallucination network learns how to use the privileged
information provided by the detector to learn a new hallucination modality representation.
Then, during inference, the model provides better IR detection using the transferred modal-
ity.

The complementary information from multi-sensors has been employed in diverse set-
tings [14, 36]. From these diverse settings, especially in computer vision applications, a
combination of sensors with different environment sensing frames (different points of view,
different modality sensing information, and others) can increase the performance of the mod-
els providing possibilities that were not available before. Furthermore, in the context of self-
driving cars and smart building applications, two modalities, commonly used, are visible
(RGB) and infrared (IR) [38]. RGB provides information for tasks like visible object detec-
tion, which outputs a bounding box for the target objects on the colored images. This task
on colored images is known to have more diverse information due to its characteristics of the
RGB light spectrum, especially with the presence of light. Thus, this sensor is preferred to
be used in daily activities where there is the presence of sunlight. On the other hand, the IR
spectrum provides complementary information for the visible modality when the light is low,
especially during the night [16]. Furthermore, IR is vastly applied in surveillance applica-
tions [46], which require the device to capture information in light-restricted environments.
IR object detection is known to detect objects using IR radiation emitted from the object,
which varies depending on the object’s material.

Despite the impressive performance of DL models, their performance can degrade sig-
nificantly when deployed for modalities that were not present during the training [4, 40].
For instance, if a model is trained on RGB modality, it is not guaranteed to perform well for
IR modality during the test [43]. Recently, the domain adaptation field has been making a
lot of progress in this direction to narrow the gap in the performance of a model trained on
one modality and applied to another. Alongside, learning using the privileged information
(LUPI) paradigm provides tools to explore additional information from different modalities,
which is highly correlated to the fact that it can also decrease the gap for model adapta-
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Chaire de recherche industrielle Distech Controls sur les réseaux de 
neurones embarqués pour le contrôle de bâtiments connectés

Objectives: 
● Contrôle des bâtiments connectés à l’aide de 

capteurs distribués à coût modique et de l’IA
● Réduction de l’empreinte énergétique et 

augmentation du confort dans les bâtiments

Challenges: 
● Intégration de l'information de divers capteurs (IR, RGB, D) à basse résolution
● Adaptation et calibration automatique des systèmes aux changements des 

conditions environnementales 
● Réduction de la complexité des réseaux profonds pour des plateforme embarqués

8

caméra IR de Distech à
basse résolution

personnes détectés
contrôleur

Distech
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Chaire de recherche industrielle Distech Controls sur les réseaux de 
neurones embarqués dans un contrôleur pour bâtiments connectés

Applications for intelligent building 
occupancy analysis using low resolution 
RGB and IR thermal sensors

● Adaptation and calibration of models to real-world data

● Multi-person tracking for people counting and XY localization

● Recognizing persons over multiple non-adjacent cameras

● Action/event recognition

● Model compression and acceleration

● Privacy preservation

9
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Chaire de recherche FRSQ double Concordia-ÉTS-CIUSSS-NIM en IA 
et santé numérique pour le changement des comportements de santé

Objectives: 
● predict a subject’s affective state in health diagnosis and monitoring 
● estimating non-verbal cues to personalize eHealth interventions in  

behavior change programs
● spontaneous recognition of facial and vocal expressions related to 

engagement, ambivalence, hesitation, motivation, etc.

10
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Affective Computing – Emotion Recognition
Task: spatio-temporal recognition of expressions (linked to pain, stress, 

depression, fatigue, etc.) from video for healthcare and e-learning

• weakly-supervised learning of videos with limited and ambiguous annotations
• rapid adaptation to different person and capture conditions
• A-V fusion of facial and vocal (and other) modalities
• spatial and temporal localisation and attention mechanisms
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Fig. 1. Block diagram of the proposed cross-attention based A-V fusion model.

Avi,j =
eZi,j/T

KP
k=1

eZi,k/T

(3)

where i and j represents the ith row and jth column
of the cross correlation matrix Z, T denotes the softmax
temperature.

Since the weights W are being learned based on the cross
correlation of the A and V features, the attention weights
of each modality is guided by the other modality, thereby
efficiently leveraging complimentary nature of the A and V
modalities. After obtaining the cross attention weights, they
are used to obtain the attention maps of the A and V features
to make it more comprehensive and discriminative, which is
given by

cXa = XaAa (4)

cXv = XvAv (5)

where Aa and Av denotes the cross attention weights of A
and V features respectively.

The re-weighted attention maps are added to the corre-
sponding features to obtain the attended features, which is
given by

Xatt,a = tanh(Xa + cXa) (6)

Xatt,v = tanh(Xv + cXv) (7)

The attended V and A features, Xatt,v and Xatt,a are
concatenated to obtain the A-V features, which is given by

bX = [Xatt,v;Xatt,a] (8)

Finally, the A-V features are fed to the fully connected layers
for the prediction of valence and arousal.

IV. EXPERIMENTAL METHODOLOGY

A. Dataset:

The proposed architecture is validated with the REmote
COLlaborative and Affective (RECOLA) dataset, which was
provided to the research community [37]. In total, the data-
set consists of 9.5 hours of multimodal recordings, which is

recorded by 46 French - speaking participants, performing
a collaborative task during a video conference. Among the
participants, 17 are French, 3 are German and 3 are Italian.
The video sequences are divided into sequences of 5 minutes
each, where the obtained sequence of 5 minute duration
is annotated with a regressed intensity value for every 40
msec by 6 French speaking annotators (three male and three
female). The data-set is split into three partitions - train
(16 subjects), validation (15 subjects) and test (15 subjects)
by balancing the age and gender of the speakers. Due to
the uncontrolled spontaneous nature of expressions of the
subjects, the data-set has been widely used by the research
community in affective computing for various challenges
such as AVEC 2015 [38], AVEC 2016 [39], etc. Most of the
existing approaches [8], [13] in the literature have validated
their approaches on the data-set used for AVEC 2016 [39]
challenge, which consists of 9 subjects for training and 9
subjects for validation. Therefore, we have also validated
the proposed approach on the data-set used in AVEC 2016
challenge.

B. Implementation Details:

For the visual modality, the faces are extracted and pre-
processed from the video sequences of the dataset using
MTCNN model [40], which is deep cascaded multi-task
framework of face detection and alignment. The prepro-
cessed faces are further re-sized to 224x224 to be fed to
the I3D network. In the proposed approach, inception v-1
architecture is used as the base model, which is inflated
from 2D pre-trained model on ImageNet to 3D CNN for
videos of facial expressions. For regularizing the network,
dropout is used with p = 0.8 on the linear layers. The
initial learning rate of the network was set to be 1e � 4
and the momentum of 0.9 is used for Stochastic Gradient
Descent (SGD). Also weight decay of 5e�4 is used. Due to
the hardware limitations and memory constraints, the batch
size of the network is set to be 8. Data augmentation is
performed on the training data by random cropping, which
produces scale invariant model. The number of epochs is
set to be 50 and early stopping is used to obtain the best

4

Cross Attentional Model for Audio-Visual 
Fusion for Dimensional Emotion Recognition

11Rajasekhar, et al. “Cross Attentional Audio-Visual Fusion for Dimensional 
Emotion Recognition,” FG 2021
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Accuracy:
• domain shifts across different cameras and modalities

• variations for different people, objects, and capture conditions (pose, 
occlusion, illumination, scale, motion blur, etc.)

• robustness of models trained using a limited amount of annotated of 
image data

• SOA DL models require some labeled data for supervised training

Complexity:
• SOA DL models are complex, growing with the number of cameras 

and modalities

Challenges in Real-World Environments

12
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Applications: develop accurate ML/DL models for video-
based recognition using  data with limited annotations

– in monitoring/surveillance: recognition of persons and action 
over different cameras and modalities

– in healthcare: recognition of expressions in e-health

Leveraging large amounts of videos data with limited 
annotation, using: 

− tracklet, clip and cluster information 
− domain-specific generation  
− domain adaptation and generalization 
− weakly-supervised learning

Focus of Talk

13
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Figure 1. Illustration of three typical types of weak supervision. Bars denote feature vectors; red/blue marks labels; ‘?’ implies that the label may be
inaccurate. Intermediate subgraphs depict some situations with mixed types of weak supervision.

assume that (xi , yi ) are generated according to an
unknown identical and independent distributionD;
in other words, (xi , yi ) are i.i.d. samples. Figure 1
provides an illustration of the three types of weak su-
pervision that we will discuss in this article.

INCOMPLETE SUPERVISION
Incomplete supervision concerns the situation in
which we are given a small amount of labeled data,
which is insu!cient to train a good learner, while
abundant unlabeled data are available. Formally, the
task is to learn f : X !→ Y from a training data set
D = {(x1, y1), . . . , (xl , yl ), xl+1, . . . , xm}, where
there are l number of labeled training examples (i.e.
those given with yi) and u = m − l number of un-
labeled instances; the other conditions are the same
as in supervised learning with strong supervision, as
de"ned at the end of the introduction. For the con-
venience of discussion, we also call the l labeled ex-
amples ‘labeled data’ and the u unlabeled instances
‘unlabeled data’.

#ere are two major techniques for this purpose,
i.e. active learning [2] and semi-supervised learning
[3–5].

Active learning assumes that there is an ‘oracle’,
such as a human expert, that can be queried to get
ground-truth labels for selected unlabeled instances.

In contrast, semi-supervised learning a$empts to au-
tomatically exploit unlabeled data in addition to la-
beled data to improve learning performance, where
no human intervention is assumed. #ere is a spe-
cial kind of semi-supervised learning called transduc-
tive learning; the main di%erence between this and
(pure) semi-supervised learning lies in their di%er-
ent assumptions about test data, i.e. data to be pre-
dicted by the trained model. Transductive learning
holds a ‘closed-world’ assumption, i.e. the test data
are given in advance and the goal is to optimize
performance on the test data; in other words, the
unlabeled data are exactly test data. Pure semi-
supervised learning holds an ‘open-world’ assump-
tion, i.e. the test data are unknown and the unlabeled
data are not necessarily test data. Figure 2 intuitively
shows the di%erence between active learning, (pure)
semi-supervised learning and transductive learning.

With human intervention
Active learning [2] assumes that the ground-truth la-
bels of unlabeled instances can be queried from an
oracle. For simplicity, assume that the labeling cost
depends only on the number of queries. #us, the
goal of active learning is to minimize the number of
queries such that the labeling cost for training a good
model can be minimized.
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Weak Supervised Learning Scenarios

– bars = vectors 
– red/blue ovals = labels 
– "?" = inaccurate labels 

Source: Z. Zhou. ‘A brief introduction to weakly supervised learning.’ 
National Science Review, 5(1):44–53, 2018.
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Weak Supervised Learning Scenarios

1) Incomplete supervision: when only a small subset of training data has 
labels, although unlabelled data is abundant

– active learning (AL): query an expert to label most relevant samples

– semi-supervised learning (SSL): train a model using both fully labeled and 
unlabeled examples

2) Inexact supervision: when training on labelled data with coarse labels
– multiple instance learning (MIL): uses training examples grouped into 

sets (bags). Supervision is only provided for an entire set

3) Inaccurate supervision: when labels may suffer from errors or noise
– data-editing methods: determine outlier annotations

– crowdsourcing with majority vote: synthesis of responses from a large 
population of annotators
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Domain Adaptation 

Unsupervised Setting: Given a set of labeled SD samples, adapt a model 
using unlabeled TD samples to improve recognition in the TD. 

– adapt a model with both labeled (SD) and unlabeled (TD) data
– SD and TD learning tasks are the same, but data distributions differ
– example: video-based face recognition

1) SD: still ROI TD: video ROIs
camera 0 camera 3

2) SD: video ROIs TD: video ROIs
camera 1 camera 3

SD: source domain
TD: target domain

S. Bashbaghi et al. / Pattern Recognition 69 (2017) 61–81 71 

Fig. 5. An example of a still image belonging to one subject and corresponding four video sequences in the COX-S2V. 

Fig. 6. The separation of COX-S2V dataset for validation, design, and operational 
phases of the proposed system. 
individual is considered at a time along with non-targets in the op- 
erational scene. In order to achieve statistically significant results, 
these experiments are replicated 5 times with considering different 
stills and videos of individuals of interest as watch-list persons. 

In experiments on Chokepoint, stills of N wl = 5 individuals of 
interest are considered to constitute the watch-list. Videos of 
N ntd = 10 unknown persons are used as calibration videos to con- 
struct a pool of e-SVM classifiers, and videos of N ntu = 10 other 
non-target individuals are associated for the operations along with 
videos of watch-list individuals. 

The facial ROIs appearing in reference stills and video frames 
were isolated in the COX-S2V and Chokepoint using the viola-Jones 
face detection. The reference stills and video ROIs are all con- 
verted to grayscale and scaled to a common size of 4 8x4 8 pixels 
for computational efficiency [23] . Histogram equalization is used 
to enhance contrast, as well as, to eliminate the effect of illumina- 
tion changes. Then, an uniform non-overlapping patch configura- 
tions is applied to divide each ROI into 9 blocks of 16x16 pixels as 
in [8,46] . HOG and LPQ feature extraction techniques are utilized 
to extract discriminating features with the dimensions of 192 and 
256, respectively. For HOG face descriptor, 3x3 pixel cells are con- 
sidered with unsigned gradients, spacing stride of l = 2 , and the 
default value of L2-Hys threshold. In addition, numbers and di- 
mensions of feature subspaces are shown in Fig. 7 . Libsvm library 
[60] is used in order to train e-SVMs, where the same regulariza- 
tion parameters C 1 = 1 and C 2 = 0 . 01 are considered for all exem- 
plars ( w of a target sample is 100 times greater than non-targets) 

[8] . Random subspace sampling with replacement is also employed 
to generate different subspaces randomly from feature space. 

Ensemble of template matchers (TMs) and e-SVMs using multi- 
ple face representations [6,8] , specialized kNN adapted for video 
surveillance (VSkNN) [5] , sparse variation dictionary learning 
(SVDL) [61] , and ESRC-DA [31] are considered as the base-line and 
state-of-the-art FR systems to validate the proposed system. In 
kNN experiment, PCA is applied for ROIs [62] are employed to 
compute the VSkNN using k = 3 (1 target still from the cohort 
model along with 2 nearest non-target video ROIs). To that end, 
distances of the probe ROI t are calculated from the target still ST j , 
as well as, two nearest non-target T 1 and T 2 from the calibration 
videos. Thus, VSkNN score ( S VSkNN ) is obtained as follows [5] : 
S V SkNN = dist (t, ST j ) 

dist (t, ST j ) + dist (t, T 1 ) + dist (t, T 2 ) (6) 
where dist( t, ST j ) is the distance of the probe face t from the tar- 
get still ST j , dist( t, T 1 ) and dist( t, T 2 ) are the distances of the given 
probe t from the two nearest non-target captures, respectively. 

In SVDL experiment, high-quality stills belonging to the indi- 
viduals of interest are considered as a gallery set and low-quality 
videos of non-target individuals are employed as a generic train- 
ing set to learn a sparse variation dictionary. Three regularization 
parameters λ1 , λ2 , and λ3 set to 0.001, 0.01, and 0.0 0 01, respec- 
tively, and also the dimensionality of faces is reduced to 90 using 
PCA according to the default values defined in [61] . The number 
of dictionary atoms are initialized to 100 based on the number of 
stills in the gallery set, where it is a trade-off between the compu- 
tational complexity and the level of sparsity. 
5.3. Performance metrics 

The performance of still-to-video FR systems are typically as- 
sessed at the transaction-level to evaluate matching of Ee-SVMs for 
each ROI pattern (target versus non-target). Transaction-level anal- 
ysis can be shown in the receiver operating characteristic (ROC) 
curves, in which true positive rates (TPRs) are plotted as a func- 
tion of false positive rates (FPRs) over all threshold values. The 
proportion of target ROIs that correctly classified as individuals of 
interest over the total number of target ROIs in the sequence is 
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Domain Adaptation 
Methods: learn robust domain-
invariant representations from 
source and target samples

Approaches: 

• discrepancy-based
• adversarial-based

• reconstruction-based
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Fig. 8. Various domain alignment configurations addressed by OT works in §B.1

be learned only on the target domain. A graph-inspired
regularization is used to preserve the after-transportation
proximity of the source samples sharing the same label.

Instead of sample alignment, follow-up works seek to
align the model’s internal features corresponding toDs and
Dt. Sliced Wasserstein Discrepancy (SWD) [85] builds on

Maximum Classifier Discrepancy (MCD) [238] that maxi-
mizes the discrepancy between task-specific classifiers as a
part of an adversarial alignment strategy. As the discrepancy
is a key component of MCD, SWD proposes upgrading
it with the Sliced Wasserstein distance. Interestingly, by
merely replacing the L1 discrepancy in MCD with SWD , the
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2) Recent Research:
– unsupervised domain adaptation 
– cross-modal recognition 
– weakly-supervised object localization

3) Potential Areas of Collaboration

Overview
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UDA in the Dissimilarity Space

DL models for video-based similarity matching:   
− metric learning of the embedding network for pairwise similarity 
− given a clip of probe and gallery images, predict their their similarity  

Figure 1. Block diagram of a generic DL model specialized for
video-based person ReID. Each query video clip from a non-
overlapping camera is input to a backbone CNN to produce a set of
features embeddings, one per image. The features are then aggre-
gated to produce a single feature representation for the clip, which
is then matched against clip representations stored in the gallery.

captured tacklets.
Given a video clip (fixed size set of bounding boxes ex-

tracted from a tracklet), the feature extractor (CNN back-
bone) produces image-level features, while the feature ag-
gregator generates a single feature representation at the
clip level, using either average pooling, weighted addition,
max pooling, recurrent NNs, etc. [16] in the temporal do-
main. Although these aggregation approaches enable to
incorporate diverse tracklet information for matching, and
can achieve a higher level of accuracy that image-based
approaches, they often fail to efficiently capture tempo-
ral information which could propagate as salient features
throughout the video sequence. Additionally, the perfor-
mance of state-of-the-art methods decline as the length of
video clips grows beyond 4 or 6 frames [16, 44].

Optical flow stream has been previously used as addi-
tional stream of input captures the motion dynamics of a
walking person in a video stream. At the same time, as
shown in Fig. 2, visual appearance of optical flow for a
walking or moving person is very close to the silhouette
of the person often suppressing the background static ob-
jects. This has a potential to be able to be used as a mask on
appearance stream to highlight common saliency between
frames. The potential silhouette produce by optical flow to-
gether with it highlighting common saliency across frames
can therefore be a good source of spatio-temporal attention.

Fig. 2 shows that the flow features are coarse representa-
tion of semantic information of moving objects. Unlike ac-
tion recognition which depends heavily on motion features,
ReID is more dependent on appearance features. Hence,
there is a scope to combine the strengths of optical flow
and appearance (video stream) features for ReID. Previous
attempts to include optical flow information into ReID sys-
tems [12, 32, 49] focused on integrating this information
as an additional input in the network with some kind of in-
tegration into the main features later. This is not effective
because optical flow only represents coarse semantic fea-
tures of moving objects (different from the image stream),
and not image-like appearance information. Moreover the
model in [12] is related to a two-stream network proposed

Figure 2. Example of a sequence of bounding boxes images from
the MARS dataset (top row), and its corresponding dense optical
flow map (bottom row). The common saliency in the sequence can
be observed from the optical flow map.

in [39] that incorporates motion and appearance feature for
action recognition. Two-stream networks that are effective
for action recognition are less effective for ReID [12].

Given the aforementioned justification, in this work the
correlation between the visual appearances across motion
and appearance stream along with their individual contribu-
tion to motion dynamics are considered. In order to capture
long term spatial information and temporal dynamics in a
video clip, a method to aggregate features from longer se-
quence effectively is presented. This has not been explored
in the literature for video person-ReID, thereby undermin-
ing the global saliency in the feature representation by using
optical flow for both appearance and motion information.

In this paper, DL model for flow-guided attention is in-
troduced for video-based person ReID to enable joint spatial
attention between input temporal(optical flow) and image
stream (video sequence). The proposed Mutual Attention
network enables to jointly learn a feature embedding that in-
corporates relevant spatial information from human appear-
ance, along with their motion information, from both ap-
pearance stream (images) and motion stream (optical flow).
The Mutual Attention network includes both optical flow
stream and image stream for ReID and leverages the mutual
appearance and motion information.

We also propose a feature aggregation method to capture
long-range temporal relationship by being able to aggre-
gate information from longer video tracklets or sequences.
Unlike prior work in literature where feature aggregation
is achieved by pooling or temporal attention from image
feature, the proposed Mutual Attention network relies on
a weighted feature addition method over images in a se-
quence to produce a single feature descriptor using both op-
tical flow and image feature information. During feature ag-
gregation, a reference frame from each tracklet is selected
based on maximum activation from both the streams, and
weights are assigned for individual features using image and
flow feature information. Attention is enabled from optical
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• Assumptions: target data is unlabeled, but we can leverage  
knowledge of tracklets from cameras

UDA in the Dissimilarity Space

Prior assumption

Source tracklets

Within class (i.e. same identity): wc

Between class (i.e. di↵erent identities): bc

Target tracklets

10

Prior assumption

Source tracklets

Within class (i.e. same identity): wc

Between class (i.e. di↵erent identities): bc

Target tracklets

10

• within class (wc):  with the same 
person

• between class (bc): with different 
persons

Prior assumption

Source tracklets

Within class (i.e. same identity): wc

Between class (i.e. di↵erent identities): bc

Target tracklets

10D Mekhazni, A Bhuiyan, G Ekladious & E Granger, Unsupervised Domain Adaptation in the 
Dissimilarity Space for Person Re-Identification, ECCV 2020.
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• We can therefore extract dissimilarity distributions:

UDA in the Dissimilarity Space
Dissimilarity distributions

Distributions in the dissimilarity space:

dwc
i (xui , x

v
i ) = ||�(xui )� �(xvi )||2, u 6= v

dbc
i ,j (x

u
i , x

z
j ) = ||�(xui )� �(xzj )||2, i 6= j & u 6= z

x
u
i uth sample x of identity i

�(x) Features of the sample x

11

21
D Mekhazni, A Bhuiyan, G Ekladious & E Granger, Unsupervised Domain Adaptation in the 
Dissimilarity Space for Person Re-Identification, ECCV 2020.
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• Apply Maximum Mean Discrepancy (MMD) loss in the 
dissimilarity space (not the feature space)

• Align pairwise distances between source and target domain
(d : distances distribution)

UDA in the Dissimilarity Space

MMD in the Dissimilarity space

Source Distributions

LwcMMD = MMD(dwcs ,dwct )

Source Distributions

Target Distributions

LbcMMD = MMD(dbcs ,dbct )

Target Distributions
14
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• D-MMD loss for adaptation of deep learning model:

UDA in the Dissimilarity Space
Overall framework

Target Distributions
16
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Example of results – comparison with state-of-art:
• Video-based ReID accuracy on Duke and MSMT target datasets, 

with Market1501 as source dataset

Conclusion: 
• Results suggest that the dissimilarity space may be a viable 

alternative for metric learning problems

UDA in the Dissimilarity SpaceComparison with SOTA

Table 1: ReID accuracy on two target datasets, w/ Market1501 as Source.

Methods

Source: Market1501

DukeMTMC MSMT17

r-1 r-5 r-10 mAP r-1 r-5 r-10 mAP

Lower Bound 23.7 38.8 44.7 12.3 6.1 12.0 15.6 2.0

BUC [Lin et al., 2019] 47.4 62.6 68.4 27.5 - - - -

ECN [Zhong et al., 2019] 63.3 75.8 80.4 40.4 25.3 36.3 42.1 8.5

D-MMD (Ours) 63.5 78.8 83.9 46.0 29.1 46.3 54.1 13.5

18

24
D Mekhazni, A Bhuiyan, G Ekladious & E Granger, Unsupervised Domain Adaptation in the 
Dissimilarity Space for Person Re-Identification, ECCV 2020.
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Camera Alignment and Weighted Contrastive Learning for 
Domain Adaptation in Video Person ReID 
• addresses shift across cameras in target domain through adversarial 

alignment
• Estimates the reliability of contrastive loss for image pairs via kNN 

weighting

UDA in the Dissimilarity Space

25D. Mekhazni, et al., Camera Alignment and Weighted Contrastive Learning for 
Domain Adaptation in Video Person ReID, WACV 2023.
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UDA in the Dissimilarity Space

DisReID : end-to-end training of the embedding network and a linear
soft-margin classifier (matcher) in the the dissimilarity space

• Losses are jointly optimized along with L2 norm on the weights of the 
linear classifier to train a linear soft-margin classifier.

• DisReID can improve ReID performance with compact DL backbones  

26
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Multi-Target Domain Adaptation

● Objective: MTDA method to train compact classification and ReID 
models through knowledge distillation

KD-ReID combines the knowledge from large specialized backbones (teachers), one 
per target domain, into a single small CNN (Student) using Knowledge Distillation

F Remigereau, et al., Knowledge Distillation for MTDA in Real-Time Person ReID, ICIP 2022.

LT Nguyen-Meidine, et al., Unsupervised MTDA Through Knowledge Distillation, WACV 2021.
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Multi-Target Domain Adaptation
Examples of results:  performance of MTDA methods when MSMT17 

is used as the source dataset

F Remigereau, et al., Knowledge Distillation for MTDA in Real-Time Person ReID, ICIP 2022.
LT Nguyen-Meidine, et al., Unsupervised MTDA Through Knowledge Distillation, WACV 2021.
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Figure 4.3 Variations of Average performance for OSNet architecture variants

Table 4.8 The impact of varying the number of target datasets the model is trying to adapt
to (M = Market1501, D = DukeMTMCReID, C = CUHK03) with Blending. These

experiments are conducted using a Resnet18 trained on the blended datasets with the
D-MMD technique

Targets
(Source:MSMT17)

Market1501 DukeMTMCReID CUHK03
mAP (%) rank-1 (%) mAP (%) rank-1 (%) mAP (%) rank-1 (%)

Teachers 51.4 74.9 51.4 69.3 61.8 65.9
M 49.2 71.7 - - - -
D - - 50.0 67.8 - -
C - - - - 60.1 64.2

M + D 40.5 65.1 43.1 62.9 - -
M + C 39.9 64.5 - - 55.7 61.9
D + C - - 42.9 62.7 54.6 60.1

M+D+C 40.3 64.5 42.2 61.8 54.2 59.6

Table 4.9 shows results when we use a smaller dataset as the source domain, namely Market1501 as the

source domain in this case. As expected, results on MSMT17 are very weak as it is a much more complex
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For accuracy, we consider the performance metrics presented in Section 3.2 on each dataset as well as

the average for each metric. While averaging accuracy metrics over all datasets is not a very indicative

way to measure how good an approach is, it does provide a clear indication when comparing two MTDA

approaches. All three MTDA approaches studied are extensions of STDA techniques. We reproduce our

experiments using the two base STDA techniques that were presented in Section 3.5 to show how they

interact with the MTDA approaches. Table 4.2 shows the main results of our experiments. For KD-ReID,

ResNet50 implements the target-specific CNN backbones, and Resnet18 implements the common student

CNN backbones. The lower bound performance is obtained through supervised training of Resnet18

on the labeled source dataset only, and the upper bound after supervised fine-tuning on blended target

datasets. FLOPs are related to the extraction CNN features for one image sample

Table 4.2 Performance of MTDA methods when MSMT17 is used as the source dataset,
and Market1501, DukeMTMC, and CUHK03 as target datasets () = 3 targets), with 2

STDA techniques – D-MMD and SPCL.

MTDA Method – Base STDA Method
Accuracy on Target Data (%) ComplexityMarket1501 DukeMTMC CUHK03 Average

mAP R1 mAP R1 mAP R1 mAP R1 # Parameters FLOPs
Lower Bound: Superv. on Source Only 27.7 54.6 30.1 49.5 27.8 32.0 28.5 45.3 12.2 M 1.19 G
One Model per Target – D-MMD (Teachers) 51.4 74.9 51.4 69.3 61.8 65.9 54.9 70.0 ) x 27.7 M 2.70 G
Blending Targets – D-MMD 40.3 64.5 42.2 61.8 54.2 58.0 45.6 61.4 12.2 M 1.19 G
KD-ReID – D-MMD (Ours) 48.9 71.9 48.9 66.9 58.0 61.7 51.9 66.5 12.2 M 1.19 G
One Model per Target – SPCL (Teachers) 54.2 75.3 52.0 69.6 33.4 34.8 45.9 59.9 ) x 27.7 M 2.70 G
Blending Targets – SPCL 54.8 76.2 51.6 70.2 38.2 42.0 48.2 62.8 12.2 M 1.19 G
KD-ReID – SPCL (Ours) 54.1 75.2 46.5 65.7 38.1 41.1 46.2 60.7 12.2 M 1.19 G
KD-ReID – Mixed D-MMD & SPCL (Ours) 55.2 76.3 50.5 68.8 53.5 57.8 53.1 67.6 12.2 M 1.19 G
Upper Bound: Superv. Fine-Tuning on Targets 65.7 86.1 60.5 77.2 65.9 68.5 64.0 77.3 12.2 M 1.19 G

We use lower and upper bound experiments to give more context to our results. The lower bound consists

of training a student model in a supervised way on source data and testing directly on data from the target

domains. For the upper bound experiment we train the model on a blend of target labeled target data. We

use the supervised loss to train the upper bound model. As expected the lower bound has lower accuracy

than all approaches considered and the upper bound outperforms all other results. One thing to note is

that the results for "One Model per Target" correspond to the performance of teacher models used in the

KD-ReID approach. This accuracy acts as a soft upper bound for the KD-ReID method as the student

model attempts to mimic the output of teacher models.

The results for one model per target represent the most naive approach where we train multiple models

which are specialized for data from a specific domain. We see that while the accuracy is quite good, the
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● An incremental MTDA method that allows to progressively train 
a compact object detection model

Multi-Target Domain Adaptation

31LT Nguyen-Meidine, et al., Incremental multi-target domain adaptation for object detection with 
efficient domain transfer, Pattern Recognition, 2022.

A common detector is adapted 
incrementally one target at time, using 
a duplicated OD model for distillation 
to limit catastrophic forgetting.  

L.T. Nguyen-Meidine, M. Kiran, M. Pedersoli et al. Pattern Recognition 129 (2022) 108771 

Fig. 3. Training the DTM prior to incremental DA of the detector to data of target T i . The detector is already adapted to targets T 1 . . . T i −1 . The pseudo-samples (pS) are 
generated by DTM. The dimension of the convolutional weights tensor of DTM are presented as (out channels × in channels × height × width) 

Fig. 4. Incremental adaption to target T i given a DTM already trained with data 
from targets T 1 . . . T i −1 . θ" r epr esents all the parameters (feature extractor, RPN, clas- 
sifier) of our detector. 

Algorithm 1: MTDA-DTM Training Strategy. 
Input : a source domain dataset S, a set of target dataset T 1 , . . . T n and a 

pretrained detection model "0 
Output : a detection model "n , adapted to n targets 
for T i ∈ (T 1 , . . . T n ) do 

if i = 1 then 
STDA using Eq. (4) 
Update domain discriminators D C 0 and detection model "0 (feature 
extractor, RPN, classification and detection) 

else 
Incr. DA using Eq. (8) 
Update domain discriminators D C i −1 and detection model "i −1 
(feature extractor, RPN, classification and detection) 

Freeze the current detector model and domain discriminators 
Train a new DTM with L DTM from Eq. (7) using current domain 
discriminators D C i and detection model "i 

end 
PascalVOC is considered as the source, while and the three others 
as target domain datasets. PASCAL VOC 2007 is compiled of 2501 
images for training, 2510 images for validation, and 4952 as test 
images, whereas PASCAL VOC 2012 contains 5717 images for train- 
ing and 5823 images for evaluation. Clipart, Watercolor, and Comic 
have respectively 10 0 0, 20 0 0, and 20 0 0 images, which are split to 
have 50% for training and 50% for the test set. For our scenario of 
MTDA with incremental learning, six common classes are selected 
among these datasets for training and evaluation. Examples from 
these datasets are shown in Fig. 5 . 

Foggy/Rain/Cityscape This ensemble of datasets contains three 
different datasets: Cityscape [18] as the source, and FoggyCityscape 

[19] and RainCityscape [20] as target domains. In Cityscape, there 
are 3475 images of 8 categories, while FoggyCityscape provides 
2500 images for training and 500 for test. As for RainCityscape, 
there are 9432 images for training and 1188 for test. Both FoggyC- 
ityscape and RainCityscape are synthetic datasets generated from 
Cityscape using [19] and [20] , with several image samples depicted 
in Fig. 5 . In RainCityscape, we noticed a lack of samples for the 
class “train” in the evaluation subset. Thus, a set of 100 randomly 
selected images with class “train” was extracted out of 500 images 
in the training set and transferred to evaluation. We provide this 
list of images on our repository for the community. 
4.1.2. MTDA across cameras 

Wildtrack This scenario [21] is comprised of video data from 
seven different cameras made for supervised pedestrian detection 
and person re-identification. Each camera captured 400 frames at 
1920 × 1080 resolution. This corresponds to a multi-camera DA 
scenario that’s close to real-world applications. For our experiment 
on unsupervised IL, we will use Camera 1 (C1) as the source do- 
main and all the other cameras (C2 −→ C7) as target domains. Since 
the dataset is not provided with a standard split, a split of 2 / 3 
(train) and 1 / 3 (test) was used for each camera to obtain a train- 
ing set and an evaluation set, respectively. Figure 5 shows some 
image samples from Cameras (C1, C2, C4 and C7). 
4.2. Implementation details 

For our experiments, for PascalVOC and Cityscape, we use the 
same settings as in [6] and other papers [1,4] . The detection model 
is first trained with a learning rate of 0.001 for 50k iterations, and 
then it is decreased by a factor of 10 for the last 20k iterations. We 
use ResNet50 and VGG16 as a backbone CNN with weights pre- 
trained on ImageNet. For the domain adaptation technique, we use 
HTCN [6] for all our baselines. Since HTCN is currently the state- 
of-the-art for STDA in object detection and it can work without 
CycleGAN, our method is orthogonal to most techniques. In our in- 
cremental setting, starting from the second target domain adapta- 
tion, the learning rate will always be 0.0 0 01 and we run the algo- 
rithm for 70k iterations with the same learning rate scheduling. α
is set as 0.1 for the Cityscape related scenario as there is a smaller 
shift between Foggy/Rain/Cityscape, since, the only change in im- 
ages is the synthetic weather. On the other hand, α is fixed to 1 in 
the other settings, since the shift is larger between domains. This 
choice of α is also confirmed with a separate hold-out validation 
and its importance is evaluated in the Appendix B. Since our base 
STDA method is HTCN, we use the same value for λ and other pa- 
rameters such as UDA losses (attention losses, and instances). For 
Wildtrack scenario, we use a ResNet50 as the backbone, and the 
hyper-parameters differ with the PascalVOC only by the number 

6 
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Visible-Infrared ReID Using Privileged Information

Cross-Modal ReID – match persons/objects across RGB and IR cameras

Challenge of V-I ReID: large shift between RGB and IR data distributions

Our approach: reduce the domain gap – leverage related PI as intermediate 
domains to train the CNN backbone:

● learning under privileged information (LUPI) paradigm

● generate privileged intermediate images, which connects the RGB 
and IR modalities during training 

M Alehdaghi et al., Adaptive Generation of Privileged Intermediate Information for Visible-
Infrared ReID, ECCVw 2022.
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Visible-Infrared ReID Using Privileged Information

Training strategy:
● (left) to generate the privileged images, the feature embedding stage 

pushes the extracted features towards the intermediate domain 
● (right) meanwhile the generation stage transforms V images to an 

intermediate domain that approaches I images.
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Figure 1: Illustration of the training strategy with our AGPI2 approach. To generate the privileged images, the feature
embedding stage (left side) pushes the extracted features to approach the intermediate domain, while the generation stage
(right side) transforms V images to an intermediate domain that approaches I images.

used grayscale images were used as the intermediate space,
while others, such as [49], have used special augmentation
by randomly selecting one value from the RGB color values
for visual inputs. However, these methods make limited uti-
lization of intermediate domains because effective methods
are required to select or generate data for these informative
domains. To address this, [22] used a single convolution
layer to transform V images into a new modality. These
approaches limit the ability to mine in such spaces and to
improve the matching in the presence of large V-I domain
shifts. In summary, to better leverage modality-invariant
attributes, the model requires appropriate intermediate im-
ages that can bridge the significant domain gap between the
appearance of I and A images.

This paper presents an Adaptive Generation approach
for the Privileged Intermediate information (AGPI2) that
connects RGB to IR modalities during training. Incorpo-
rating an intermediate domain that shares similar attributes
of main modalities allows the model to represent RGB and
IR images to the non-modality-specific feature space. The
translated images have the same content (body-pose, back-
ground, and texture) as RGB ones, while trying to share
the same style information (heat). Since there is no super-
vised information for generating such steps, an optimizing
transformation will be utilized end-to-end and adversarial
based on the ultimate ReID objective. To this end, we en-
courage the generative model to adapt the transformation
of color images with three channels to one-channel images
such that the gap between such virtual and IR images is less
than for the visible image. Also, with respect to knowledge
of the existence of the same individual in RGB and IR im-

ages in different cameras, the generative model focuses on
attributes that are important for detecting the identity (ID) of
those persons and the type of sensor. For this, we proposed
an ID and modality discriminator which tries to defeat the
generator. Additionally, the feature embedding module tries
to minimize the gap between such color-free images and
visible ones. As shown in Fig. 1, the generative stage seeks
to transform RGB images into the intermediate domain so
that its distance is less than IR, while the feature embedding
stage ensures that the feature vector of RGB and new inter-
mediate images are identical and close to intermediate ones
during training.

Our main contributions are as follows. (1) A novel
AGPI2 framework is proposed for generating privileged in-
termediate images from V images, which connects RGB
and IR modalities during training. (2) A joint learning
strategy is introduced to train the feature embedding and
generative modules end-to-end. The non-linear genera-
tor is trained such that the generated images maintain the
RGB content while taking style from IR. (3) We proposed
an adversarial loss between the ID-Modality discrimina-
tor and generator that allows the transformed images to
integrate discriminative ID information from the V do-
main and modality information of the I domain. Using the
dual-intermediate triplet and color-free losses, our method
provides color-independent intermediate images that min-
imize the distance between RGB and IR modalities. (4)
Extensive experiments on the challenging SYSU-MM01
[41] and RegDB [26] datasets indicate that our model out-
performs state-of-art methods for cross-modal V-I person
ReID, while incurring no computational overhead during

2

M Alehdaghi et al., Adaptive Generation of Privileged Intermediate Information for Visible-
Infrared ReID, ECCVw 2022.
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Visible-Infrared ReID Using Privileged Information

34

Feature Embedding Module
• color-free loss
• intermediate dual triplet loss
• cross-entropy

Joint learning of generator, feature embedding, and ID-modality 
discrimination
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where yj and yk represent the id of person in the image, and
fvj , f

i
k 2 Rd, d the features dimension.

3.1. LUPI Framework
Given that the generated images are not available at test

time, we formulate our proposed learning strategy accord-
ing to the LUPI paradigm. In LUPI [20], the deep learn-
ing (DL) model accesses to privileged information (PI) only
during the training phase, while the main information is ac-
cessible in both the training and testing phases. A cross-
modal representation model typically uses two modalities
to leverage shared discriminative features between inputs
during the training phase. However, during the inference
phase, the model will receive only one modality input. Dur-
ing the training phase, the model uses privileged bridging
information between the two modalities to address domain
discrepancies between infrared and visible images, which
can be numerous [30]. Since each of the main modality do-
mains (V and I) shares more information with the intermedi-
ate domain (Z) than each domain alone (V!I or I!V), the
intermediate modality helps each modality to benefit from
the other.

min
⇥

Ev,i,z?,y2V,I,Z,Y [L('(v, i, z?;⇥), y)]. (2)

where ⇥ as learning parameters. The intermediate domain
z? is utilized to transfer the knowledge from PI to the model
by sharing its backbone parameters (all layers except the
first one) with V and I streams. The proposed loss helps to
transfer such knowledge efficiently from the intermediate
modality.

3.2. ID-Modality Discrimination
Since the model does not have access to the I version of

V images, we need some attributes which are discriminative
about the modality and identity of individuals in the image.
In fact, our goal is to transform only the person’s pixels in
images because those pixels are only common between vis-
ible and infrared cameras for the same person. In order to
have such features, an MLP network is proposed to classify
the identity, as well as the type of modality. So, we define
new label sets y0j = 2yj+m based on identity and modality
where yj is the original label and m = 0 for visible and
created intermediate and m = 1 for infrared. For training
the ID-Modality Discrimination module, there is

Ldis =
2MX

c=1

�y0j,c log(p
0
j,c) (3)

where p0j,c is the predicted probability observation j is of
class c by the discriminator D.

3.3. Generative Module
Employing an intermediate domain with a lower domain

shift to the main domains (RGB and IR) in the training pro-

cess helps the model better leverage common semantics in
order to embed raw input with shared discriminative fea-
tures. Instead of the same linear transformation for all pix-
els on visible image to intermediate, an adaptive and unsu-
pervised intermediate generative model, G, is proposed to
transfer images from one modality to another in an End-to-
End fashion in order to fulfill re-identification objectives.
For reconstruction, we used Encoder-Decoder [35] which
is shown in Fig. 2. It first encodes the images to features
vector which is fused with infrared features, F i

j by the cross
non-local attention, and then reconstructs the image by ap-
plying the decoder, z?j = G(vi, F i

j ).
Since there is no supervised (not co-located) I image for

each V one, the model tries to generate images from colored
cameras so that its feature embedding is similar to infrared
cameras. This feature should contain not only modality-
invariant identity information from visible but also be sim-
ilar to infrared as the opposite of what the module D de-
tects. In order to achieve this, we define the opposite la-
bel as we did for D for generated intermediate images as
y00j = 2yj + 1. In other words, the generator tries to create
images that the discriminator will detect as Infrared. So this
adversarial objective is:

Ladv =
2MX

c=1

�y00j,c log(p
00
j,c)

+ max(0,M1 + d(czk, c
i
k)� d(czk, c

v
k))

(4)

where p00k is the predicted probability observation of identity
k from generated images, and czk, cik,cvk are center of fea-
ture embedding of generated, infrared and visible images
respectively. The function d measures the distance between
two vectors and czk = Nk

PNk

j=1 '(z
?
j ), where Nk is the

number of images for identity k. In other words, the gener-
ator should create samples that have id discriminate infor-
mation as much as the visible images and also such infor-
mation would be more analogous to infrared.

For generating more realistic and edge-preserving im-
ages, we also transfer infrared images into the intermediate
domain which provides a supervised reconstruction loss:

Lrec = |G(ij , F i
j )� ij |, (5)

and the total loss for generative modules is :

Lgan = Lrec + �aLadv (6)

3.4. Feature Embedding Module
The model has three backbones with shared layers to ex-

tract features from visible, generated intermediate and in-
frared images respectively. To have modality-invariant de-
scriptor features, the modified version of the triplet loss and
the color-free loss for intermediate images have been pro-
posed while we train the Re-Identification module.
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where yj and yk represent the id of person in the image, and
fvj , f

i
k 2 Rd, d the features dimension.

3.1. LUPI Framework
Given that the generated images are not available at test

time, we formulate our proposed learning strategy accord-
ing to the LUPI paradigm. In LUPI [20], the deep learn-
ing (DL) model accesses to privileged information (PI) only
during the training phase, while the main information is ac-
cessible in both the training and testing phases. A cross-
modal representation model typically uses two modalities
to leverage shared discriminative features between inputs
during the training phase. However, during the inference
phase, the model will receive only one modality input. Dur-
ing the training phase, the model uses privileged bridging
information between the two modalities to address domain
discrepancies between infrared and visible images, which
can be numerous [30]. Since each of the main modality do-
mains (V and I) shares more information with the intermedi-
ate domain (Z) than each domain alone (V!I or I!V), the
intermediate modality helps each modality to benefit from
the other.

min
⇥

Ev,i,z?,y2V,I,Z,Y [L('(v, i, z?;⇥), y)]. (2)

where ⇥ as learning parameters. The intermediate domain
z? is utilized to transfer the knowledge from PI to the model
by sharing its backbone parameters (all layers except the
first one) with V and I streams. The proposed loss helps to
transfer such knowledge efficiently from the intermediate
modality.

3.2. ID-Modality Discrimination
Since the model does not have access to the I version of

V images, we need some attributes which are discriminative
about the modality and identity of individuals in the image.
In fact, our goal is to transform only the person’s pixels in
images because those pixels are only common between vis-
ible and infrared cameras for the same person. In order to
have such features, an MLP network is proposed to classify
the identity, as well as the type of modality. So, we define
new label sets y0j = 2yj+m based on identity and modality
where yj is the original label and m = 0 for visible and
created intermediate and m = 1 for infrared. For training
the ID-Modality Discrimination module, there is

Ldis =
2MX

c=1

�y0j,c log(p
0
j,c) (3)

where p0j,c is the predicted probability observation j is of
class c by the discriminator D.

3.3. Generative Module
Employing an intermediate domain with a lower domain

shift to the main domains (RGB and IR) in the training pro-

cess helps the model better leverage common semantics in
order to embed raw input with shared discriminative fea-
tures. Instead of the same linear transformation for all pix-
els on visible image to intermediate, an adaptive and unsu-
pervised intermediate generative model, G, is proposed to
transfer images from one modality to another in an End-to-
End fashion in order to fulfill re-identification objectives.
For reconstruction, we used Encoder-Decoder [35] which
is shown in Fig. 2. It first encodes the images to features
vector which is fused with infrared features, F i

j by the cross
non-local attention, and then reconstructs the image by ap-
plying the decoder, z?j = G(vi, F i

j ).
Since there is no supervised (not co-located) I image for

each V one, the model tries to generate images from colored
cameras so that its feature embedding is similar to infrared
cameras. This feature should contain not only modality-
invariant identity information from visible but also be sim-
ilar to infrared as the opposite of what the module D de-
tects. In order to achieve this, we define the opposite la-
bel as we did for D for generated intermediate images as
y00j = 2yj + 1. In other words, the generator tries to create
images that the discriminator will detect as Infrared. So this
adversarial objective is:

Ladv =
2MX

c=1

�y00j,c log(p
00
j,c)

+ max(0,M1 + d(czk, c
i
k)� d(czk, c

v
k))

(4)

where p00k is the predicted probability observation of identity
k from generated images, and czk, cik,cvk are center of fea-
ture embedding of generated, infrared and visible images
respectively. The function d measures the distance between
two vectors and czk = Nk

PNk

j=1 '(z
?
j ), where Nk is the

number of images for identity k. In other words, the gener-
ator should create samples that have id discriminate infor-
mation as much as the visible images and also such infor-
mation would be more analogous to infrared.

For generating more realistic and edge-preserving im-
ages, we also transfer infrared images into the intermediate
domain which provides a supervised reconstruction loss:

Lrec = |G(ij , F i
j )� ij |, (5)

and the total loss for generative modules is :

Lgan = Lrec + �aLadv (6)

3.4. Feature Embedding Module
The model has three backbones with shared layers to ex-

tract features from visible, generated intermediate and in-
frared images respectively. To have modality-invariant de-
scriptor features, the modified version of the triplet loss and
the color-free loss for intermediate images have been pro-
posed while we train the Re-Identification module.
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Visible-Infrared ReID Using Privileged Information
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Joint learning of generator, feature embedding, and ID-
modality discrimination
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Modality SYSU-MM01 RegDB
I V I V

I 0 0.86 0 1.05
V 0.86 0 1.05 0
Grayscale, HAT[51] 0.68 0.31 0.93 0.36
Random Combin., RPIG[1] 0.64 0.34 0.92 0.39
AGPI2 0.58 0.43 0.79 0.52

Table 3: MMD between Visual, Infrared, and different
intermediate images generation approaches on the SYSU-
MM01 and RegDB datasets.

(a)

(b)

(c)

(d)

Figure 3: Examples of images generated for transferring
from V to the intermediate domain. Rows (a) and (c) are V
and I images. The intermediate and reconstructed I images
are shown in rows (b) and (d).

struction loss is applied to the encoder and decoder parts.
In absence of this loss, the generated images lack suffi-
cient important information for supporting the feature mod-
ule and make the performance drop dramatically. As the
color-free loss pushes the visible features to be the same
as the features of such not meaningful intermediate images,
the performance of matching between visible and infrared
decreases (from 41.55 to 5.51) as seen in the 5th row of the
Table. 6. In the supplementary, we show a sample of the
generated images in case of removing this loss.

Training Testing R1 (%) mAP(%)Query Gallery

I-V
V V 97.40 91.82
I I 95.96 80.49
I V 58.69 41.57

I-V-Z
V V 97.68 90.19
I I 95.34 81.62
I V 73.17 56.35

Table 4: The impact on accuracy of the proposed interme-
diate module for the SYSY-MM01 under the multi-shot set-
ting.

Model R1(%) mAP(%)
S M S M

Pre-trained (test:I!V) 2.26 3.31 3.61 1.71
Lower (train: V, test:I!V ) ⇤ 7.41 9.86 8.83 6.83
Upper (train: I, test: I!I ) $ 90.34 94.90 87.45 80.38
Baseline (test:I!V) 49.41 58.69 41.55 38.17
Grayscale [51] (test:I!V) 61.45 65.16 59.46 46.94
RandG [1] (test:I!V) 64.50 69.01 61.05 50.84
AGPI2 (test:I!V) 67.29 73.17 63.86 56.35
AGPI2 + Aug (test:I!V) 72.23 78.19 70.58 64.13

Table 5: Accuracy using different intermediate images on
SYSU-MM01 using the Single and Multi-shot gallery.

Settings R1 (%) mAP (%)Lid Ltri Ldual Lcf Ladv Lrec

3 3 7 7 7 7 49.41 41.55
3 7 3 7 3 3 60.64 56.15
3 7 7 3 3 3 61.71 57.06
3 7 3 3 7 3 60.67 58.35
3 7 3 3 3 7 9.32 5.51
3 7 3 3 3 3 67.29 63.86

Table 6: Impact on accuracy of different settings on SYSU-
MM01 in single-shot. Our settings achieve the best result.

5. Conclusion

In this paper, a new framework is introduced for gen-
erating privileged intermediate information called AGPI2.
This method generates virtual intermediate images for train-
ing that bridges the domain gap between V and I images,
thereby reducing the modality discrepancy problem. To en-
hance modality-invariant information on representative fea-
tures, we propose a color-free loss to align visible and inter-
mediate image features and a dual-triplet loss to connect V
and I images through the intermediate domain. The effec-
tiveness of AGPI2 is shown experimentally on the SYSU-
MM01 and RegDB datasets, where it outperforms state-of-
art methods for V-I person ReID while incurring no compu-
tational overhead during inference.

8

The impact on accuracy of the proposed 
intermediate module on the SYSU-MM01 dataset
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Multimodal A-V Fusion of Faces and Voices
A Joint Cross-Attention Model for A-V Fusion in Dimensional 
Emotion Recognition

• Joint modeling of inter- and intra-modal relationships to capture the 
semantic relevance among A-V features
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Fig. 2: Joint cross-attention model proposed for A-V fusion (in testing mode).

modeling, which captures the long-term temporal relation-
ships. Similarly, for A modality, combined features from a
2D CNN trained on spectrograms, and conventional hand-
crafted MFCC features, widely used in speech processing
for many applications.

Then we have considered two different feature-level
fusion strategies to obtain a feature representation for each
modality. First, we concatenate the features from all the
backbones, followed by fully connected layer in order to
produce a compact joint representation based on multiple
diverse backbones. Feature concatenation followed by fully
connected layer has been widely used in the literature for
many applications. The second strategy is a more special-
ized feature stacking approach, where the features extracted
from of multiple divers backbones and from a sequence are
assembled into a block of features, and then processed by
the A-V fusion model. This approach eliminates the need
for training an additional fully connected layer to combine
features, as all features are trained within the fusion model.

3.4 Joint Cross-Attentional (JCA) AV-Fusion:
Though A-V fusion can be achieved through unified multi-
modal training, it was found that multimodal performance
often declines over that of individual modalities [54]. This
has been attributed to a number of factors, such as differ-
ences in learning dynamics for A and V modalities [54],
different noise topologies, with some modality streams con-
taining more or less information for the task at hand, as well
as specialised input representations [55]. Therefore, we have
trained DL models for the individual A and V modalities
independently in order to extract A and V features, which
is further fed to the JCA fusion model for A-V fusion that
outputs final valence and arousal prediction.

For a given video sequence, the V modality carries rele-
vant information in some video clips, whereas A modality
might be more relevant for others. Since, multiple modalities
convey diverse and complementary information for valence
and arousal than a single modality, their complementarity
can be effectively through A and V fusion. In order to
reliably fuse these modalities, we rely on cross-attention

based fusion mechanism to efficiently encode the inter-
modal information, while preserving the intra-modal char-
acteristics. Though cross-attention has been conventionally
applied across the features of individual modalities, we have
explored cross-attention in a joint framework. Specifically,
our joint A-V feature representation is obtained by concate-
nating the A and V features to attend to the individual A
and V features. By using the joint representation, features
of each modality attend to oneself, as well as the other
modality, helping to capture the semantic inter-modal re-
lationships across A and V. The heterogeneity among the A
and V modalities can also be drastically reduced by using
the combined feature representation in the cross-attentional
module, which further improves system performance. A
block diagram of the proposed model is shown in Figure
2.
A) Training mode: Let Xa and Xv represents two sets of
deep feature vectors extracted for the A and V modalities,
in response to a given input video sub-sequence S of
fixed size, where Xa = {x1

a,x
2
a, ...,x

L
a} 2 Rda⇥L and

Xv = {x1
v,x

2
v, ...,x

L
v} 2 Rdv⇥L. L denotes the number of

non overlapping fixed-size clips sampled uniformly from S,
da and dv represents the dimension of the A and V feature
representations, respectively, and x

l
a and x

l
v denotes the A

and V feature vectors, respectively, for l = 1, 2, ..., L clips.
Instead of applying cross-attention across the features of
individual A and V modalities, we use cross-attention in
a joint learning framework. The joint representation of A-V
features, J , is obtained by concatenating the A and V feature
vectors:

J = [Xa;Xv] 2 Rd⇥L (1)

where d = da + dv denotes the feature dimension of
concatenated features.

The concatenated A-V feature representations (J ) of the
given video sub-sequence (S) is now used to attend to
unimodal feature representations Xa and Xv. The joint
correlation matrix Ca across the A features Xa, and the

R G Praveen,  et al., "Audio-Visual Fusion for Emotion Recognition in the Valence-Arousal Space 
Using Joint Cross-Attention." IEEE Trans. on Biometrics, Behavior, and Identity Science (2023).
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4) Joint Cross Attention (JCA) for A-V Fusion

81

•Joint cross attention maps are obtained from the joint cross-correlation matrix.


Ha = ReLU(WaXa + WcaC⊤
a )

Hv = ReLU(WvXv + WcvC⊤
v )

•The attended features are computed from the attention maps.


Xatt,a = WhaHa + Xa

Xatt,v = WhvHv + Xv

•The attended features are concatenated and fed to regression layers to obtain final 
predictions.


4) Joint Cross Attention (JCA) for A-V Fusion
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•Joint cross attention maps are obtained from the joint cross-correlation matrix.


Ha = ReLU(WaXa + WcaC⊤
a )

Hv = ReLU(WvXv + WcvC⊤
v )

•The attended features are computed from the attention maps.


Xatt,a = WhaHa + Xa

Xatt,v = WhvHv + Xv

•The attended features are concatenated and fed to regression layers to obtain final 
predictions.
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Multimodal A-V Fusion of Faces and Voices
A Joint Cross-Attention Model for Audio-Visual Fusion in Dimensional 
Emotion Recognition: 
• Visualization of attention scores of proposed A-V fusion (JCA) and CA 

models on video of Affwild2 dataset.JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Fig. 4: Visualization of attention scores of our proposed A-V fusion (JCA) and CA [15] models on video named ”317” of
Affwild2 dataset.

Fig. 5: Visualization of attention scores of our proposed A-V fusion (JCA) and CA [15] models on video named ”video92”
of Affwild2 validation dataset.

a two stream A-V network by using R(2plus1)D [27] for
V stream, and Resnet18 [28] for A stream. They have also
used additional masks as external inputs to guide the spatial
attention of the V modality and label filtering based on multi
task labels to deal with the noisy annotations of valence and
arousal. Wang et al [18] further extended their approach
to perform semi-supervised learning. However they use
the annotations of other ABAW challenge tasks (expression
classification and action unit classification) to filter the noisy
labels of valence and arousal, as well as to estimate pseudo
labels for the unlabeled samples. Deng et al. [25] proposed
an iterative distillation method for modeling the uncer-
tainty of annotations of valence and arousal and showed
significant improvement in the performance. However, they
have used iterative distillation of student models, which is
computationally expensive as well as labels of other tasks
to model the uncertainty of valence/arousal labels. Zhang
et al. [14], Meng et al. [68] and Vincent et al. [69] are the
only approaches, which does not use the labels of additional
tasks. Meng et al. [68] has shown significant improvement
in the performance by using three external datasets along
with multiple backbones of A and V modalities, whereas
[14] and [69] uses only Affwild2 dataset similar to ours. The
proposed approach performs at par with that of [14] and

better than that of [69] in terms of valence.

5.3 Visual Analysis
We have further validated the proposed approach using
interpretability analysis by visualizing the attention scores
of A and V modalities. In the proposed approach, we have
primarily exploited the temporal attention within the same
modality, as well as across the A-V modalities. So the clip-
level attention scores help us to intuitively understand the
important clips in the video, where the fusion attention
model is focuses on the temporal sequence of A and V
modalities. In order to highlight the improvement of the
proposed approach w.r.t. that of the vanilla CA model [15],
we have also plotted the attention scores of the proposed
JCA model along with that of [15]. It can be observed that
the proposed JCA model is able to effectively capture the
importance modalities, as well as the temporal importance
within the modalities. For instance, as shown in Fig 4,
the proposed JCA model focuses on V modality when
the person smiles as the facial muscles around his nose
and mouth significantly changes over time. Similarly, the
proposed model assigns high attention score for A modality
when there is high energy levels in the A modality. From Fig
5, we observe that the proposed model assigns higher atten-

R G Praveen,  et al., "Audio-Visual Fusion for Emotion Recognition in the Valence-Arousal Space 
Using Joint Cross-Attention." IEEE Trans. on Biometrics, Behavior, and Identity Science (2023).
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Multimodal A-V Fusion of Faces and Voices
A Joint Cross-Attention Model for Audio-Visual Fusion in Dimensional 
Emotion Recognition: 
• Results: comparison to state-of-the-art on RECOLA and AffWild 2 data

R G Praveen,  et al., "Audio-Visual Fusion for Emotion Recognition in the Valence-Arousal Space 
Using Joint Cross-Attention." IEEE Trans. on Biometrics, Behavior, and Identity Science (2023).
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Weakly-Supervised Object Localization (WSOL)

Choe J. et al.. Evaluating Weakly Supervised Object Localization Methods Done Right, CVPR 2020. 

Training Testing
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Weakly-Supervised Localization

Source: Zhou et al. Learning Deep Features for Discriminative Localization. CVPR 2016

CAMs

Per-class spatial map
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Class Activation Mapping Methods 
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F-CAM for Improved Interpolation

● A Challenge with CAMs: low resolution (due to convolution and 
pooling) has negative impact on localization performance

Standard interpolated CAMsStandard interpolated from CAM of 8x8 
resolution (downscale factor of 32)

Source: F. Yu, V. Koltun, and T. Funkhouser, Dilated residual networks, CVPR 2017
Source: Oquab, M., et al., Is object localization for free?-weakly-supervised learning with CNNs. CVPR 2015
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F-CAM for Improved Interpolation

● Challenges: Impact of CAMs size on localization performance 
on CUB dataset

Results: increasing the downscaling factor (z) leads to a considerable 
decline in localization accuracy 

42
Belharbi, S, et al., "F-CAM: Full resolution class activation maps via guided parametric upscaling." 
WAVC 2022.
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F-CAM for Improved Interpolation

● Proposed F-CAM with Guided Parametric Upscaling

Encoder: any pre-trained CNN 
classifier, 
Lc = classification loss (supervised)

Decoder: trained to perform 
parametric upscaling
LD = pixel alignment loss (unsupervised)

= SR (CAM) + CRF (image) + ASC (size)
where 
• SR: pseudo-labels (positive/negative 

evidence at pixel level)
• CRF: image properties
• ASC: unsupervised size constraint

43
Belharbi, S, et al., "F-CAM: Full resolution class activation maps via guided parametric upscaling." 
WAVC 2022.
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F-CAM for Improved Interpolation
● Proposed F-CAM: training models the foreground and background

Overall loss for end-to-end training

LD = LSR + LCRFLc = LCE

ASC: area size constraint  

44
Belharbi, S, et al., "F-CAM: Full resolution class activation maps via guided parametric upscaling." 
WAVC 2022.
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F-CAM for Improved Interpolation

Experiments:
Visual results on 
images from the 
CUB dataset

VGG16         Inception v3           ResNet50

CAM

+ F-CAM

Grad CAM

+ F-CAM

Grad 
CAM++

+ F-CAM

45Belharbi, S, et al., "F-CAM: Full resolution class activation maps via guided parametric upscaling." 
WAVC 2022.
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F-CAM: 
Some Results 
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NEGEV: Extension of F-CAM to histology image analysis
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Deep Interpretable Classification and
Weakly-Supervised Segmentation of Histology

Images via Max-Min Uncertainty
Soufiane Belharbi, Jérôme Rony, Jose Dolz, Ismail Ben Ayed, Luke McCaffrey, Eric Granger

Abstract— Weakly-supervised learning (WSL) has re-
cently triggered substantial interest as it mitigates the
lack of pixel-wise annotations. Given global image labels,
WSL methods yield pixel-level predictions (segmentations),
which enable to interpret class predictions. Despite their
recent success, mostly with natural images, such methods
can face important challenges when the foreground and
background regions have similar visual cues, yielding high
false-positive rates in segmentations, as is the case in chal-
lenging histology images. WSL training is commonly driven
by standard classification losses, which implicitly maximize
model confidence, and locate the discriminative regions
linked to classification decisions. Therefore, they lack
mechanisms for modeling explicitly non-discriminative re-
gions and reducing false-positive rates. We propose novel
regularization terms, which enable the model to seek both
non-discriminative and discriminative regions, while dis-
couraging unbalanced segmentations. We introduce high
uncertainty as a criterion to localize non-discriminative
regions that do not affect classifier decision, and describe
it with original Kullback-Leibler (KL) divergence losses
evaluating the deviation of posterior predictions from the
uniform distribution. Our KL terms encourage high uncer-
tainty of the model when the latter inputs the latent non-
discriminative regions. Our loss integrates: (i) a cross-
entropy seeking a foreground, where model confidence
about class prediction is high; (ii) a KL regularizer seeking
a background, where model uncertainty is high; and (iii)
log-barrier terms discouraging unbalanced segmentations.
Comprehensive experiments and ablation studies over the
public GlaS colon cancer data and a Camelyon16 patch-
based benchmark for breast cancer show substantial im-
provements over state-of-the-art WSL methods, and con-
firm the effect of our new regularizers. Our code is publicly
available1.

Index Terms— Deep Weakly-Supervised Learning; Image
Classification; Semantic Segmentation; Histology Images;
Interpretability

I. INTRODUCTION

This research was supported in part by Canadian Institute of Health
Research (CIHR), Natural Sciences and Engineering Research Council
of Canada (NSERC) and Compute Canada.
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1Publicly available code: https://github.com/sbelharbi/deep-wsl-histo-min-
max-uncertainty.

Fig. 1. Top row: Intuition of our proposal. A decidable region (high
confidence) covers the discriminative parts (foreground), while an
undecidable region (high uncertainty) covers the non-discriminative
parts (background). Bottom row: Examples of test image samples from
different classes of the GlaS dataset [68], where the annotated glands are
the regions of interest, and the remaining tissue is background. Note the
glands’ different shapes, sizes, context, and multiple-instance aspects.
Best visualized with color.

M
EDICAL imaging is one of the primary tools for
early detection of cancer. In particular, the analysis of

histology images remains the gold standard in the assessment
of many pathologies, such as breast [30], [32], [78], colon [65],
[69], [81] and brain cancer [37], [42], [82]. Such analysis is
mainly performed manually by pathologists on large histology
images. To alleviate the workload of pathologists, computer-
aided diagnosis (CAD) has been largely explored to support
timely and reliable decisions. In histology images, CAD often
relies on computer vision and machine learning algorithms,
with a recent focus on deep learning models [61], where image
classification has attracted much of the attention [11], [17],
[61], [70], [71], [73].

In the recent years, deep learning models, and in particular
convolutional neural networks, have achieved state-of-the-art
performances in a breadth of computer vision and medical
imaging problems, for instance, image classification [28], [45]
and semantic segmentation [19], [48], [49], among many other
problems. Despite their unprecedented success in recent years,
training highly accurate deep learning models typically requires
large annotated data. While building image-level annotations
by human experts could be manageable, producing pixel-level
annotations is a very laborious and time-consuming task, more

BELHARBI et al.: MAX-MIN UNCERTAINTY FOR WEAKLY-SUPERVISED SEGMENTATION OF HISTOLOGY IMAGES 11

Fig. 11. GlaS dataset: Qualitative results of the predicted binary mask for each method on several GlaS test images. Our method, referred to as
Ours, is the SEM version with the ASC regularization term. (Best visualized in color.)

Fig. 12. Camelyon16-P512 benchmark: Examples of mask predictions over normal samples from the testing set. White pixels indicate metastatic
regions, while black pixels indicate normal tissue. This illustrates false positives. Note that normal samples do not contain any metastatic regions.
Ours is SEM version with the ASC regularization. (Best visualized in color.)

Fig. 13. Camelyon16-P512 benchmark: Examples of predicted pixel-wise masks over metastatic samples from the test set. White pixels indicate
metastatic regions, while black pixels represent normal tissue. Ours is the SEM version with the ASC regularization. (Best visualized in color.)
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where subscript l in pl denotes the lth-component of probability
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Derivatives for binary classification:

48S Belharbi et al., , "Deep interpretable classification and weakly-supervised segmentation of 
histology images via max-min uncertainty." IEEE Trans on Medical Imaging (2022)
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Weakly-Supervised Video Object Localization

Video object localization allows to:
- locate object of interest in video
- understand video content 
- improve subsequent tasks: video summarization, event 

detection, object detection, tracking, etc.

Localization in Unconstrained videos is challenging:
- moving and occluded objects
- camera motion and viewpoint changes 
- decoding artifacts and editing effects

Belharbi, S, et al., TCAM: Temporal Class Activation Maps for Object Localization in Weakly-
Labeled Unconstrained Videos. WACV 2023.
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CNN

Localize object 
in each frameVideo sequence

Levels of supervision:
- annotating all the frames using bounding boxes (bbox) is an expensive process
- training a model with weak video labels, like video tags are less expensive
- global video tag = main object class in the video, not necessarily present in 

all the frames

Weakly-Supervised Video Object Localization

Belharbi, S, et al., TCAM: Temporal Class Activation Maps for Object Localization in Weakly-
Labeled Unconstrained Videos. WACV 2023.
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Challenges for State-of-Art Methods:
- Multiple sequential and independent stages

- Video tags (labels) are only used to cluster video

- ROI are not necessarily discriminative

- Motion cues (optical flow) are noisy, not always discriminative, and 
need post-processing

- Requires solving an optimization problem at inference time: slow 
inference: build a model per class/video

Weakly-Supervised Video Object Localization

Belharbi, S, et al., TCAM: Temporal Class Activation Maps for Object Localization in Weakly-
Labeled Unconstrained Videos. WACV 2023.
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Weakly-Supervised Video Object Localization

Adapt CAMs to exploit the spatio-temporal dependency in videos

Advantages compared to SOTA of WSVOL (videos):
- single, discriminative model for all classes
- fast inference (single forward pass)

Advantage compared to CAMs for WSOL (still images):
- allows to leverage temporal information in videos

CAM 
results on 
still images

Belharbi, S, et al., TCAM: Temporal Class Activation Maps for Object Localization in Weakly-
Labeled Unconstrained Videos. WACV 2023.



54

Temporal CAM (TCAM) Method

Adapt CAM methods to exploit the spatiotemporal 
dependency in videos
- leverage the slight variations in sets of consecutive frames
- aggregate diversified CAMs from n frames 
- include a learnable decoder to produce accurate F-CAMs
- use aggregated CAMs to sample pixel pseudo-labels for training 

the decoder

Belharbi, S, et al., TCAM: Temporal Class Activation Maps for Object Localization in Weakly-
Labeled Unconstrained Videos. WACV 2023.



55

: sampling function

: video
: video tag (class)
: frame at time t
: CAM of frame

: aggregated CAM
: pixel pseudo-label mask
: output CAM

Training: accounts for spatio-
temporal dependency at a 
CAM level – it leverages 
sequences of n frames

Temporal CAM (TCAM) Method

Belharbi, S, et al., TCAM: Temporal Class Activation Maps for Object Localization in Weakly-
Labeled Unconstrained Videos. WACV 2023.
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TCAM: Temporal Class Activation Maps

● Object Localization in Weakly-Labeled Unconstrained Videos

Adapt CAM methods to exploit the 
spatiotemporal dependency in videos

• Leverage the slight variations in sets of 
consecutive frames

• The CAM-TMP module aggregates 
diversified CAMs from n frames

• It relies on the maximum activation at 
location p across the independent CAMs

Belharbi, S, et al., TCAM: Temporal Class Activation Maps for Object Localization in Weakly-
Labeled Unconstrained Videos. WACV 2023.

TCAM: Temporal Class Activation Maps for Object
Localization inWeakly-Labeled Unconstrained Videos

(#1703)
Soufiane Belharbi1* & Ismail Ben Ayed1 & Luke McCaffrey2 & Eric Granger1

1LIVIA, Dept. of Systems Engineering, ETS Montreal, Canada
2Rosalind and Morris Goodman Cancer Research Centre, Department of Oncology, McGill University

Context

Localization in unconstrained videos is challenging due to: (1)
moving objects, (2) camera motion, (3) viewpoint changes, (4)
decoding artifacts, (5) editing effects, and (6) costly annotation

Weak supervision: global video tags (classes) are available

State-of-the-art methods in weakly-supervised video object lo-
calization have good performance, but:

M multiple sequential and independent stages
M video tags (labels) are used only to cluster video
M ROI are not necessarily discriminative
M motion cues (optical flow) are noisy, not always
discriminative, and need post-processing

M requires solving an optimization problem at inference time:
slow inference (build a model per class).

Proposal: Use CAMswith Temporal Dependency

• CAM methods are
successful in developing
discriminative WSOL models
for CNNs
• We adapt CAM methods to
exploit the spatiotemporal
dependency in videos
• Leverage the slight
variations in sets of
consecutive frames
• The CAM-TMP module
aggregates diversified CAMs
from n frames

CAM-TMP
CAM Temporal Max-Pooling

    

Proposal: Overall Architecture

• Includes a learnable decoder to produce accurate CAMs
• Training: accounts for spatio-temporal dependency at a CAM
level – it leverages sequences of n frames
• Uses aggregated CAMs to sample pixel pseudo-labels for
training the decoder
• Fast inference: CAMs produced from independent frames

]

Proposal: Training Loss

Total loss: pseudo labels, CRF, unsupervised size constraint.

min
◊

X

pœ�Õ
t

Hp(Yt, St) + ⁄ R(St, Xt) ,

s.t. X
S

r
t Ø 0 , r œ {0, 1}

(1)

where the classifier is frozen, P
pœ�Õ

t
Hp(Yt, St) is partial cross-

entropy loss over pixel pseudo-labels, R(St, Xt) is a CRF loss,
and P

S
r
t Ø 0 is unsupervised size constraint (the Absolute Size

Constraints, ASC).

Empirical Results

Datasets: Localization accuracy (CorLoc) on YouTube-Object v1.0 and v2.2 datasets

Comparison with State-of-Art Methods
Dataset Method (venue) Aero Bird Boat Car Cat Cow Dog Horse Mbike Train Avg Time/Frame

Prest et al. (cvpr,2012) 51.7 17.5 34.4 34.7 22.3 17.9 13.5 26.7 41.2 25.0 28.5 N/A
Papazoglou et al. (iccv,2013) 65.4 67.3 38.9 65.2 46.3 40.2 65.3 48.4 39.0 25.0 50.1 4s
Joulin et al.(eccv,2014) 25.1 31.2 27.8 38.5 41.2 28.4 33.9 35.6 23.1 25.0 31.0 N/A
Kwak et al. (iccv,2015) 56.5 66.4 58.0 76.8 39.9 69.3 50.4 56.3 53.0 31.0 55.7 N/A
Rochan et al. (ivc,2016) 60.8 54.6 34.7 57.4 19.2 42.1 35.8 30.4 11.7 11.4 35.8 N/A
Tokmakov et al. (eccv,2016) 71.5 74.0 44.8 72.3 52.0 46.4 71.9 54.6 45.9 32.1 56.6 N/A
POD (cvpr,2016) 64.3 63.2 73.3 68.9 44.4 62.5 71.4 52.3 78.6 23.1 60.2 N/A
Tsai et al. (eccv,2016) 66.1 59.8 63.1 72.5 54.0 64.9 66.2 50.6 39.3 42.5 57.9 N/A
Haller et al. (iccv,2017) 76.3 71.4 65.0 58.9 68.0 55.9 70.6 33.3 69.7 42.4 61.1 0.35s
Croitoru et al. (LowRes-Netiter1) (ijcv,2019) 77.0 67.5 77.2 68.4 54.5 68.3 72.0 56.7 44.1 34.9 62.1 0.02s

YTOv1

Croitoru et al.(LowRes-Netiter2) (ijcv,2019) 79.7 67.5 68.3 69.6 59.4 75.0 78.7 48.3 48.5 39.5 63.5 0.02s
Croitoru et al. (DilateU-Netiter2) (ijcv,2019) 85.1 72.7 76.2 68.4 59.4 76.7 77.3 46.7 48.5 46.5 65.8 0.02s
Croitoru et al. (MultiSelect-Netiter2) (ijcv,2019) 84.7 72.7 78.2 69.6 60.4 80.0 78.7 51.7 50.0 46.5 67.3 0.15s
SPFTN (M) (tpami,2020) 66.4 73.8 63.3 83.4 54.5 58.9 61.3 45.4 55.5 30.1 59.3 N/A
SPFTN (P) (tpami,2020) 97.3 27.8 81.1 65.1 56.6 72.5 59.5 81.8 79.4 22.1 64.3 N/A
FPPVOS (optik,2021) 77.0 72.3 64.7 67.4 79.2 58.3 74.7 45.2 80.4 42.6 65.8 0.29s
CAM (cvpr,2016) 75.0 55.5 43.2 69.7 33.3 52.4 32.4 74.2 14.8 50.0 50.1 0.2ms
GradCAM (iccv,2017) 86.9 63.0 51.3 81.8 45.4 62.0 37.8 67.7 18.5 50.0 56.4 27.8ms
GradCAM++ (wacv,2018) 79.8 85.1 37.8 81.8 75.7 52.4 64.9 64.5 33.3 56.2 63.2 28.0ms
Smooth-GradCAM++ (corr,2019) 78.6 59.2 56.7 60.6 42.4 61.9 56.7 64.5 40.7 50.0 57.1 136.2ms
XGradCAM (bmvc,2020) 79.8 70.4 54.0 87.8 33.3 52.4 37.8 64.5 37.0 50.0 56.7 14.2ms
LayerCAM (ieee,2021) 85.7 88.9 45.9 78.8 75.5 61.9 64.9 64.5 33.3 56.2 65.6 17.9ms
TCAM (ours) 90.5 70.4 62.2 75.7 84.8 81.0 81.0 64.5 70.4 50.0 73.0 18.5ms
Haller et al. (iccv,2017) 76.3 68.5 54.5 50.4 59.8 42.4 53.5 30.0 53.5 60.7 54.9 0.35s
Croitoru et al. (LowRes-Netiter1) (ijcv,2019) 75.7 56.0 52.7 57.3 46.9 57.0 48.9 44.0 27.2 56.2 52.2 0.02s
Croitoru et al. (LowRes-Netiter2) (ijcv,2019) 78.1 51.8 49.0 60.5 44.8 62.3 52.9 48.9 30.6 54.6 53.4 0.02s
Croitoru et al. (DilateU-Netiter2)(ijcv,2019) 74.9 50.7 50.7 60.9 45.7 60.1 54.4 42.9 30.6 57.8 52.9 0.02s

YTOv2.2

Croitoru et al. (BasicU-Netiter2)(ijcv,2019) 82.2 51.8 51.5 62.0 50.9 64.8 55.5 45.7 35.3 55.9 55.6 0.02s
Croitoru et al. (MultiSelect-Netiter2)(ijcv,2019) 81.7 51.5 54.1 62.5 49.7 68.8 55.9 50.4 33.3 57.0 56.5 0.15s
CAM (cvpr,2016) 52.3 66.4 25.0 66.4 39.7 87.8 34.7 53.6 45.4 43.7 51.5 0.2ms
GradCAM (iccv,2017) 44.1 68.4 50.0 61.1 51.8 79.3 56.0 47.0 44.8 42.4 54.5 27.8ms
GradCAM++ (wacv,2018) 74.7 78.1 38.2 69.7 56.7 84.3 61.6 61.9 43.0 44.3 61.2 28.0ms
Smooth-GradCAM++ (corr,2019) 74.1 83.2 38.2 64.2 49.6 82.1 57.3 52.0 51.1 42.4 59.5 136.2ms
XGradCAM (bmvc,2020) 68.2 44.5 45.8 64.0 46.8 86.4 44.0 57.0 44.9 45.0 54.6 14.2ms
LayerCAM (ieee,2021) 80.0 84.5 47.2 73.5 55.3 83.6 71.3 60.8 55.7 48.1 66.0 17.9ms
TCAM (ours) 79.4 94.9 75.7 61.7 68.8 87.1 75.0 62.4 72.1 45.0 72.2 18.5ms

Visual Results

Figure 1. Prediction examples of test sets frames. Left:
TCAM (ours). Right: baseline CAM method, LayerCAM
Bounding box: ground truth (green), prediction (red).
The second column is predicted CAM on images.

    

Ablation Studies         

Figure 2. Localization accuracy of TCAM with different
temporal dependencies n on the YTOv1 test set.

Methods CorLoc
Layer-CAM (ieee,2021) 65.6

n = 0
Ours + C+

t + C≠
t 68.5

Ours + C+
t + C≠

t + CRF 69.6
Ours + C+

t + C≠
t + ASC 66.2

Ours + C+
t + C≠

t + CRF + ASC 70.5
n > 0 Ours + C+

t + C≠
t + CRF + ASC + CAM-TMP 73.0

Improvement +7.4

Table 1. Localization accuracy of TCAM with different
losses on the YTOv1 test set.

Main Conclusions

Standard CAM methods: can yield discriminative CNNs with accurate
localization
With TCAM: leveraging temporal information during training yielded new
state-of-the-art results

Code + video demo: https://github.com/sbelharbi/tcam-wsol-video soufiane.belharbi.1@ens.etsmtl.ca
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CRF
pixel pseudo-
labels

large size 
(FG/BG)

Training: accounts for spatio-
temporal dependency at a 
CAM level

Temporal CAM (TCAM) Method

Belharbi, S, et al., TCAM: Temporal Class Activation Maps for Object Localization in Weakly-
Labeled Unconstrained Videos. WACV 2023.
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Multi-frame training using CoLo-
CAM method with n = 3 frames. 

- Each pixel (dot), is connected 
(orange line) to every pixel across 
frames to measure color similarity 
(connection thickness indicates 
similarity strength). 

- CAM locations at pixels with 
similar colors are constrained to have 
similar activations (green lines are  
for alignment). 

CoLo-CAM Method for Object Co-Localization 

S Belharbi, et al., CoLo-CAM: Class Activation Mapping for Object Co-Localization in Weakly-
Labeled Unconstrained Videos. arXiv:2303.09044.
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Multi-frame training using CoLo-
CAM method with n = 3 frames. 
- CoLo-CAM can leverage 

spatiotemporal information in activation 
maps without any assumptions about 
object movement. 

- Given a sequence of frames, explicit 
joint learning of localization is produced 
across maps based on color cues, by 
assuming an object has similar color
across frames. 

CAM Method for Object Co-Localization 

S Belharbi, et al., CoLo-CAM: Class Activation Mapping for Object Co-Localization in Weakly-
Labeled Unconstrained Videos. arXiv:2303.09044.
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tions assuming that an object is local. We use a uniform
distribution over low activations to sample background pix-
els assuming that background regions are evenly distributed
in an image. The location of these two random pixels is
encoded in ⌦0

t. The partially pseudo-labeled mask for the
sample Xt is denoted Yt, where Yt(p) 2 {0, 1}2 with labels
0 for background, 1 for foreground, and locations with un-
known labels are encoded as unknown. At this stage, since
the pre-trained classifier g is frozen, its CAM Ct is fixed
and does not change during the training of f , allowing more
stable sampling. Leveraging Yt is achieved using partial
cross-entropy,

Hp(Yt,St) =

� (1� Yt(p)) log(1� S
0
t (p))� Yt(p) log(S1

t (p)) .
(1)

Local consistency (CRF). Standard CAMs are low resolution
leading to a bloby effect where activations do not align with
the object’s boundaries, thus contributing to poor localiza-
tion [8, 17]. To avoid this, we use a CRF loss [78] to push
the activations of St to be locally consistent in terms of color
and proximity. For an image frame Xt and its maps St, the
CRF loss is formulated as,

R(St,Xt) =
X

r2{0,1}

S
r
t
>
Wt (1� S

r
t ) , (2)

where Wt is an affinity matrix in which W [i, j] captures
the color similarity and proximity between pixels i, j in the
image Xt. We use a Gaussian kernel to capture the color
and spatial similarities [45]. The kernel is implemented via
the permutohedral lattice [1] for fast computation.
Absolute size constraint (ASC). Unbalanced activations are
common in CAMs [8, 17, 68]. Often, strong activations
cover only small and the most discriminative parts of an
object allowing the background to dominate. Alternatively,
large parts of an image are activated as foreground [68]. To
avoid both these scenarios, we employ a global constraint
over the CAM, in which we push the size of both regions, i.e.,
the foreground and background, to be as large as possible
in a competitive way. To this end, we use an Absolute Size
Constraint (ASC) [7] over the maps St. This is achieved
without requiring any knowledge about the object size or a
prior on which region is larger [63]. This generic prior is
formulated as inequality constraints which are then solved
via a standard log-barrier method [10],

X
S

r
t � 0 , r 2 {0, 1} , (3)

where  (S0
t ) =

P
S

0
t , (S

1
t ) represent the area, i.e., size,

of the background and foreground regions, respectively. Us-
ing log-barrier function, we set,

Rs(St) =
X

r2{0,1}

�1

z
log( (Sr

t )) , (4)

where z > 0 is a weight that is increased periodically.
Multi-frame prior: color cue. Given a sequence of frames
{X}nt , we aim to consistently and simultaneously align
their corresponding CAMs {S}nt in term of color. Thus,
we perform a co-localization of objects with similar colors
across frames. This is translated by explicitly constrain-
ing the CAMs {S}nt to activate similarly over similar color
pixels across all the frames. This assumes that an object
appearing in a video sequence maintains similar color. How-
ever, unlike [5], we do not assume minimal displacement
of objects. This gives our method more flexibility to lo-
calize an object independently from its location. Addition-
ally, this joint learning opens an explicit communication
tunnel between CAMs, allowing a transfer and aggregation
of knowledge. This can help attenuate localization errors
caused by noisy pseudo-labels. We perform this constraint
by connecting each pixel at each frame to all pixels in every
frame via the color term of the CRF loss [78]. This creates a
fully connected graph between all pixels, allowing explicit
communication. In practice, this is achieved by stitching all
frames3 {X}nt to build a single large image. We refer to the
composite image by Cat({X}nt ) = X̄ , where Cat(·) is a
stitching function. Similarly, we denote Cat({S}nt ) = S̄ as
the corresponding stitched CAMs done in the same order as
Cat({X}nt ). The loss is formulated as,

Rc({S}nt , {X}nt ) =
X

r2{0,1}

S̄
r>

W (1� S̄
r) , (5)

where W is the color similarity matrix between pixels of
the stitched image X̄ . We refer to this term as CoLoc. Min-
imizing Eq.5 pushes the sequence of CAMs {S}nt to be
consistent, with respect to color, across the frames sequence
{X}nt .
Total training loss. Our final loss combines per-frame and
multi-frame losses to be optimized simultaneously. It is
formulated as,

min
✓

X

p2⌦0
t

Hp(Yt,St) + � R(St,Xt) +Rs(St)

+
�c

|[Rc]|
Rc({S}nt , {X}nt ) ,

(6)

where �,�c are positive weighting coefficients. All the terms
are optimized simultaneously via SGD.

We note that the magnitude4 of the term Rc increases
with the number of frames n. Large magnitudes can eas-
ily overpower other terms in Eq.6, hindering learning. In
practice, this makes tuning the hyper-parameter �c critical
and challenging. To reduce this strong dependency on n

3Frames are stitched horizontally or vertically.
4Typical magnitude of Rc is 2 · 109 for n = 2, and can grow to 2 · 1011

for n = 18. As a results, adequate values of the non-adapative �c should
be below 2 · 10�9.

5

multi-frame loss
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Experimental results: CorLoc on the YouTube-Object v1.0 dataset

CAM methods

CAM Method for Object Co-Localization 
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Dataset Method (venue) Aero Bird Boat Car Cat Cow Dog Horse Mbike Train Avg Time/Frame
[65] (cvpr) 51.7 17.5 34.4 34.7 22.3 17.9 13.5 26.7 41.2 25.0 28.5 N/A
[62] (iccv) 65.4 67.3 38.9 65.2 46.3 40.2 65.3 48.4 39.0 25.0 50.1 4s
[39] (eccv) 25.1 31.2 27.8 38.5 41.2 28.4 33.9 35.6 23.1 25.0 31.0 N/A
[46] (iccv) 56.5 66.4 58.0 76.8 39.9 69.3 50.4 56.3 53.0 31.0 55.7 N/A
[66] (ivc) 60.8 54.6 34.7 57.4 19.2 42.1 35.8 30.4 11.7 11.4 35.8 N/A
[79] (eccv) 71.5 74.0 44.8 72.3 52.0 46.4 71.9 54.6 45.9 32.1 56.6 N/A
POD [43] (cvpr) 64.3 63.2 73.3 68.9 44.4 62.5 71.4 52.3 78.6 23.1 60.2 N/A
[80] (eccv) 66.1 59.8 63.1 72.5 54.0 64.9 66.2 50.6 39.3 42.5 57.9 N/A
[32] (iccv) 76.3 71.4 65.0 58.9 68.0 55.9 70.6 33.3 69.7 42.4 61.1 0.35s
[19] (LowRes-Netiter1) (ijcv) 77.0 67.5 77.2 68.4 54.5 68.3 72.0 56.7 44.1 34.9 62.1 0.02s

YTOv1

[19] (LowRes-Netiter2) (ijcv) 79.7 67.5 68.3 69.6 59.4 75.0 78.7 48.3 48.5 39.5 63.5 0.02s
[19] (DilateU-Netiter2) (ijcv) 85.1 72.7 76.2 68.4 59.4 76.7 77.3 46.7 48.5 46.5 65.8 0.02s
[19] (MultiSelect-Netiter2) (ijcv) 84.7 72.7 78.2 69.6 60.4 80.0 78.7 51.7 50.0 46.5 67.3 0.15s
SPFTN (M) [93] (tpami) 66.4 73.8 63.3 83.4 54.5 58.9 61.3 45.4 55.5 30.1 59.3 N/A
SPFTN (P) [93] (tpami) 97.3 27.8 81.1 65.1 56.6 72.5 59.5 81.8 79.4 22.1 64.3 N/A
FPPVOS [81] (optik) 77.0 72.3 64.7 67.4 79.2 58.3 74.7 45.2 80.4 42.6 65.8 0.29s
CAM [101] (cvpr) 75.0 55.5 43.2 69.7 33.3 52.4 32.4 74.2 14.8 50.0 50.1 0.2ms
GradCAM [70] (iccv) 86.9 63.0 51.3 81.8 45.4 62.0 37.8 67.7 18.5 50.0 56.4 27.8ms
GradCAM++ [14] (wacv) 79.8 85.1 37.8 81.8 75.7 52.4 64.9 64.5 33.3 56.2 63.2 28.0ms
Smooth-GradCAM++ [60] (corr) 78.6 59.2 56.7 60.6 42.4 61.9 56.7 64.5 40.7 50.0 57.1 136.2ms
XGradCAM [28] (bmvc) 79.8 70.4 54.0 87.8 33.3 52.4 37.8 64.5 37.0 50.0 56.7 14.2ms
LayerCAM [38] (ieee) 85.7 88.9 45.9 78.8 75.5 61.9 64.9 64.5 33.3 56.2 65.6 17.9ms
TCAM [5] (wacv) 90.5 70.4 62.2 75.7 84.8 81.0 81.0 64.5 70.4 50.0 73.0 18.5ms
CoLo-CAM (ours) 90.4 74.0 91.8 87.8 78.7 80.9 89.1 74.1 85.1 68.7 82.1 18.5ms

[32] (iccv) 76.3 68.5 54.5 50.4 59.8 42.4 53.5 30.0 53.5 60.7 54.9 0.35s
[19] (LowRes-Netiter1) (ijcv) 75.7 56.0 52.7 57.3 46.9 57.0 48.9 44.0 27.2 56.2 52.2 0.02s
[19] (LowRes-Netiter2) (ijcv) 78.1 51.8 49.0 60.5 44.8 62.3 52.9 48.9 30.6 54.6 53.4 0.02s
[19] (DilateU-Netiter2)(ijcv) 74.9 50.7 50.7 60.9 45.7 60.1 54.4 42.9 30.6 57.8 52.9 0.02s

YTOv2.2

[19] (BasicU-Netiter2)(ijcv) 82.2 51.8 51.5 62.0 50.9 64.8 55.5 45.7 35.3 55.9 55.6 0.02s
[19] (MultiSelect-Netiter2)(ijcv) 81.7 51.5 54.1 62.5 49.7 68.8 55.9 50.4 33.3 57.0 56.5 0.15s
CAM [101] (cvpr) 52.3 66.4 25.0 66.4 39.7 87.8 34.7 53.6 45.4 43.7 51.5 0.2ms
GradCAM [70] (iccv) 44.1 68.4 50.0 61.1 51.8 79.3 56.0 47.0 44.8 42.4 54.5 27.8ms
GradCAM++ [14] (wacv) 74.7 78.1 38.2 69.7 56.7 84.3 61.6 61.9 43.0 44.3 61.2 28.0ms
Smooth-GradCAM++ [60] (corr) 74.1 83.2 38.2 64.2 49.6 82.1 57.3 52.0 51.1 42.4 59.5 136.2ms
XGradCAM [28] (bmvc) 68.2 44.5 45.8 64.0 46.8 86.4 44.0 57.0 44.9 45.0 54.6 14.2ms
LayerCAM [38] (ieee) 80.0 84.5 47.2 73.5 55.3 83.6 71.3 60.8 55.7 48.1 66.0 17.9ms
TCAM [5] (wacv) 79.4 94.9 75.7 61.7 68.8 87.1 75.0 62.4 72.1 45.0 72.2 18.5ms
CoLo-CAM (ours) 82.9 92.2 85.4 67.7 80.1 85.7 79.2 67.4 72.7 58.2 77.1 18.5ms

Table 1: CorLoc localization accuracy on the YTOv1 [65] and YTOv2.2 [40] test sets.

pears in complex scenes (airport), often with very large size,
and occlusion. Our method has the same inference time as
TCAM [5], and our new term in Eq.5 adds a small training
time of ⇠ 81 ms per 64 frames (see supplementary material).
Ablation Studies.

Methods CorLoc

Layer-CAM [38] (ieee) 65.6

Single-frame
PL 68.5
PL + CRF 69.6
PL + ASC 66.2
PL + ASC + CRF 70.5

Multi-frame PL + ASC + CRF + CoLoc (Ours) 82.1
Improvement +16.5

Table 2: Impact on CorLoc localization accuracy of differ-
ent CoLo-CAM loss terms on the YTOv1 test set.

Impact of different loss terms (Tab.2). Without any spa-
tiotemporal dependency, using pseud-labels (PL), CRF, and
absolute size constraint (ASC) helped to improve localiza-
tion performance. This brought up localization performance
from 65.6% to 70.5%. However, adding our multi-frame
term, i.e., CoLoc, increased the performance up to 82.1%
demonstrating its benefits.
Impact of n on localization performance (Fig.2a). We ob-
serve that both methods, TCAM [5] and ours, get better
results when considering spatiotemporal information. How-
ever, TCAM reached its peak performance when using only
n = 2 frames. Large performance degradation is observed

when increasing n. This comes as a result of assuming
that objects have minimal movement. On the opposite, our
method improves when increasing n until it reaches its peak
at n = 4. Different from TCAM, our method showed more
robustness and stability with the increase of n since we only
assume objects visual similarity.
Constant vs adaptive �c (Fig.2c). Note that in the constant
setup, adequate �c can be determined using a blind search
or given a prior on the magnitude loss. Both approaches
are tedious especially when typical values of �c are below
2 ⇤ 10�9 creating a large search space. Exploring such space
is computationally expensive. Using constant value held
good results up to 6 frames, while, large n led to perfor-
mance degradation since adequate values are required. Our
adaptive scheme is more intuitive, and does not require a
prior knowledge. It achieved constantly better and stable
performance with less effort. Better results are obtained with
�c values between 3, and 7 (Fig.2b). Performance degrada-
tion is observed when using large amplification giving more
importance to Rc term, allowing it to outweigh other terms
which hindered training. In the opposite, using small amplifi-
cation gave small push to this term, hence, less contribution.
Visual Results (Fig.4). Compared to TCAM [5] and Layer-
CAM [38], we observe that our CAMs became more discrim-
inative. This translates in several advantageous properties.
Our CAMs showed sharp, more complete, and less noisy

7

- Standard CAMs: can yield discriminative CNNs with accurate localization
- Leveraging temporal information during training yielded new SOA results
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Experimental results: Localization examples of test sets frames YouTube-
Object v1.0 and v2.2 datasets. Bounding box: GT (green), prediction (red).  

S Belharbi, et al., CoLo-CAM: Class Activation Mapping for Object Co-Localization in Weakly-
Labeled Unconstrained Videos. arXiv:2303.09044.
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Figure 3: Typical challenges of our method. (Colors: Fig.4)

activations localized more precisely around objects. In ad-
dition, localizing small objects such as ’Bike’, and large
objects such as ’Train’ becomes more accurate. CAM acti-
vations often suffer from co-occurrence issue [5, 68] where
consistently appearing contextual objects are confused with
main objects. Our CAMs showed more robustness to this
issue. This can be seen in the case of road vs ’Car’/’Bike’,
or water vs ’Boat’. Despite this improvement, our method
still faces two main challenges (Fig.3). The first is the case
of samples with dense and overlapped instances (top Fig.3).
This often causes activations to spill across instances to form
a large object hindering localization performance. The sec-
ond issue concerns large localization errors (bottom Fig.3).
Since our localization is mainly stimulated by discriminative
cues from CAMs, it is still challenging to detect when a clas-
sifier points to the wrong object. This often leads to large
errors that are difficult to correct in downstream use. Fu-
ture works may consider leveraging classifier response over
ROIs to ensure their quality. Additionally, object movement
information can be combined with CAMs’ cues.

5. Conclusion
We have proposed a new CAM-based approach for

WSVOL task. Using color cue, we constrain CAM response
over a sequence of frames to be similar over similar pixels,
assuming an object maintains a similar color. This achieves
explicit co-localization across frames. It is performed by
minimizing a color-term of a CRF loss over a sequence of

Figure 4: Localization examples of test sets frames. Bound-

ing boxes: ground truth (green), prediction (red). The second
column of each method is the predicted CAM over image.

images/CAMs. In addition to our multi-frame constraint, we
imposed per-frame local constraints to be then all optimized
simultaneously. Empirical experiments showed the merits of
our method, and its robustness to long-term dependencies,
leading to new state-of-the-art localization performance.

8

CAM Method for Object Co-Localization 
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Experimental results: Impact on CorLoc accuracy of the number of 
frames n on YTOv1 test set.

S Belharbi, et al., CoLo-CAM: Class Activation Mapping for Object Co-Localization in Weakly-
Labeled Unconstrained Videos. arXiv:2303.09044.

CAM Method for Object Co-Localization 
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activations localized more precisely around objects. In ad-
dition, localizing small objects such as ’Bike’, and large
objects such as ’Train’ becomes more accurate. CAM acti-
vations often suffer from co-occurrence issue [5, 68] where
consistently appearing contextual objects are confused with
main objects. Our CAMs showed more robustness to this
issue. This can be seen in the case of road vs ’Car’/’Bike’,
or water vs ’Boat’. Despite this improvement, our method
still faces two main challenges (Fig.3). The first is the case
of samples with dense and overlapped instances (top Fig.3).
This often causes activations to spill across instances to form
a large object hindering localization performance. The sec-
ond issue concerns large localization errors (bottom Fig.3).
Since our localization is mainly stimulated by discriminative
cues from CAMs, it is still challenging to detect when a clas-
sifier points to the wrong object. This often leads to large
errors that are difficult to correct in downstream use. Fu-
ture works may consider leveraging classifier response over
ROIs to ensure their quality. Additionally, object movement
information can be combined with CAMs’ cues.

5. Conclusion
We have proposed a new CAM-based approach for

WSVOL task. Using color cue, we constrain CAM response
over a sequence of frames to be similar over similar pixels,
assuming an object maintains a similar color. This achieves
explicit co-localization across frames. It is performed by
minimizing a color-term of a CRF loss over a sequence of

Figure 4: Localization examples of test sets frames. Bound-

ing boxes: ground truth (green), prediction (red). The second
column of each method is the predicted CAM over image.

images/CAMs. In addition to our multi-frame constraint, we
imposed per-frame local constraints to be then all optimized
simultaneously. Empirical experiments showed the merits of
our method, and its robustness to long-term dependencies,
leading to new state-of-the-art localization performance.
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1) Personal Presentation

2) Recent Research:
– unsupervised domain adaptation 
– cross-modal recognition 
– weakly-supervised object localization

3) Potential Areas of Collaboration

Overview
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Developing DL models for visual recognition based on image data 
with limited annotations: 
● rapid adaptation/calibration of DL models for deployment
● video-base emotion recognition
● methods weaky-supervised learning
● weakly-supervised spatial and temporal localization for visual 

interpretation

● joint detection & embedding (JDE) for cost-effective ReID and multi-
object tracking

Potential Areas for Collaboration 

65

JOINT DETECTION AND EMBEDDING

A PREPRINT

June 16, 2022

ABSTRACT

This document is a a brief survey on Joint Detection and Embedding methods(JDE) for Multi Object
Tracking. This doc also explores further directions and scope for improvement on State-Of-The-Art.

1 Introduction

Multi Object Tracking is an important compute vision task with a goal of generating trajectories for objects in videos Zhu
et al. [2018]. MOT involves two main steps i.e detection and data association Bewley et al. [2016a]. Data association
can be a simple and computationally less complex method based on proximity of objects between frames Bewley
et al. [2016a] or comprehensive methods based on deep feature extraction for each object Bewley et al. [2016b]. Data
association methods based on deep feature extraction have achieved State-Of-The-Art results Wang et al. [2021], Xu
et al. [2019], Zhu et al. [2018]. Above mentioned two stage MOT methods suffer from complexity issue as they have
to extract features for every object every frame to compare each object with one another, drastically increasing the
complexity. Hence there have been few attempts in literature to for a joint detection and embedding extraction for data
association in one single stage or forward pass Zhang et al. [2020], Wang et al. [2020]. This survey discusses on these
methods, their problems and directions for further research.

2 Joint Detection And Embedding

Joint Detection and Embedding model for one shot detection and embedding extraction was first proposed by Wang
et al. [2020] with the main objective to track efficiency problems in conventional MOT methods like Bewley et al.
[2016b].

Figure 1: Comparison of different approaches to MOT. (a) Separate Detection and Embedding (SDE) (b) Two stage
model (c) Joint Detection and Embedding.

Align distributions to handle 
multiple cameras scenarios 
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Rapid Adaptation of DL Models for Deployment
• Weakly-supervised DA based e.g., on video tags 
• Domain generalization to improve robustness
• Multi-source DA using several source datasets for robust

adaptation
• Multi-target DA: adapt of one compact model for multiple 

targets
• Cross-modality adaptation across sensors, e.g., RGB-IR

Jia, Xinyu, et al. "LLVIP: A Visible-Infrared Paired Dataset for Low-light Vision." ICCV 2021.
66
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Rapid Adaptation of DL Models for Deployment
• Source-free and test-time DA: adapt rapidly without source data 

for efficiency and privacy
• Continuous (incremental) DA: adapt to new data
• Gradual DA: find on multiple intermediate domains, and multiple 

steps to manage larger domain shifts

Tahmed, S. M., et al., Unsupervised multi-source domain adaptation without access to source 
data. CVPR 2021. 
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Video-Based Emotion Recognition

Privileged knowledge distillation: distill knowledge from teacher (w 
privileged information) to a student (w/o privileged information)

Test-time adaptation to persons/contexts with short neutral control video

Spatio-temporal localization based with constraints from action units. 

Aslam, H. et al., Privileged Knowledge Distillation for Dimensional Emotion Recognition in the 
Wild. CVPR 2023 workshops. 
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Modality Train Test Type

Visual ✔ ✔ Discriminant

Audio ✔ ✔ Discriminant

Text ✔ O Discriminant

Physiological O X Discriminant

Age, Gender O O Side Info

Pose, Eye Gaze X ✔ Contextual

Gestures/Body 
Language X ✔ Contextual

SOLUTION
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• Distill knowledge from 
• Teacher (w privileged information) to a 
• Student (w/o privileged information)

• Single teacher Architecture
• Multimodal teacher having joint representation
• Distilled to unimodal student.

• Multi- teacher Architecture
• Multiple teachers
• Multimodal Teachers, Unimodal Teachers
• Ensemble, Selection

33

3.1.1 Feature extraction and Spatial Attention Module

ResNet-18 pre-trained on imagenet and MsCeleb-1M dataset will be used as a feature extractor

following the standard practice and to compare with SOTA models with same backbone. The

features are spatial i.e extracted from last convolutional layer. The feature extractor are followed

by a spatial attention block which can be a simple convolutional layer with sigmoid activation.

Spatial attention blocks can be replaced by top-down WSOL methods. The output of attention

module generates a spatial attention mask as shown in the Figure 3.1. The attention mask is

multiplied with feature map and passed to feature encoding blocks.

3.1.2 Saliency Mask Generator

Though we have the idea of the location of the AU on the face, localizing them in the image

automatically is not a trivial task. As a start we follow Li et al. (Li, Abtahi, Zhu & Yin, 2017b)

and Bonnard et. al (Bonnard, Dapogny, Dhombres & Bailly, 2022). As shown in Figure 3.2, the

steps are:

Figure 3.2 The overview of the steps of Saliency Map Generator.

1. Localization of the facial landmarks as the facial keypoints detection algorithms are very

robust, and the A�ectNet-8 (Mollahosseini et al., 2019) and RAF-DB (Li et al., 2017a)

datasets already contain facial landmarks in their ground truth.
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Image Processing
• Adversarial Nets: 

P Shamsolmoali, M Zareapoor, E Granger, H Zhou, R Wang, ME Celebi, J
Yang. "Image synthesis with adversarial networks: A comprehensive survey and
case studies." Information Fusion, 2021.

• Image completion/inpainting:
P. Shamsolmoali, M Zareapoor, E Granger, Image Completion via Dual-Path 
Cooperative Filtering, ICASSP 2023.

• Image-to-image translation, face style transfer:  
Shamsolmoali P, Zareapoor M, Das S, Garcia S, Granger E, Yang J. GEN:
Generative equivariant networks for diverse image-to-image translation. IEEE
Trans. on Cybernetics, 2022.GAN’s Case Studies

path, has a generator unit to maintain the learning. These two
learning pathways are equally collaborate for sharing the pa-
rameters for improving the generalization ability. Figure 13
demonstrates the di�erence between the single-pathway and
two-pathway networks and Figure 14 contains some sam-
ples of face style transferring. We generated these results
based the codes provided in [127] on CelebA dataset.This
model uses the attribute image as an identity to create a cor-
responding conditional vector by incorporating an additional
face verification network, for producing high-quality results
via a multi-paths network. Choi et al. [149] proposed Star-
GAN, which is a scalable model that can perform image-
to-image translations for multiple domains. The integrated
model architecture of StarGAN allows simultaneous train-
ing of multiple datasets within di�erent domains of a single
network. However, this model requires parallel utterances,
transcriptions, or time alignment procedures that decline the
e�ciency.

Later, StarGAN-VC [150] was proposed to handle the
limitations of the preliminary version [149]. StarGAN-VC
[150] simultaneously learns many-to-many mappings across
di�erent attribute domains using a single generator network,
it also able to generate converted speech signals quickly enough
to allow real-time implementations and only requires sev-
eral minutes of training to generate reasonably realistic data.
Reed et al. [151] was the first work that successfully gen-
erated plausible images for birds and flowers from their text
descriptions. Later, SatckGAN [19] is proposed which is
the improved version of [151]. It has only two layers of the
generators. The generator takes (z, c) as input and outputs a
blurry image that can present an irregular shape with blurry
details of some objects, whereas the second generator as in-
put receives (z, c) and the output of the previous generator
and then produces an image with more realistic details. In
addition, the proposed StackGAN [19] improves upon the
preliminary study [151] in terms of accuracy, but a look at
the structure has a lot to answer, especially about the quan-
tification of speed improvements which is very important in
this context. Figure 15 presents some generated sample re-
sults from StackGAN [19].

AttenGAN [90] is another latest work that proposed at-
tentional generative adversarial network that uses attention-
driven, hierarchy network for creating image out of a text.

Figure 13: Performance of single-path and dual-path network.
Left: standard single path model to learn the latent repre-
sentation. Right: Two-pathway network combined with self-
supervised learning, which can learn complete representations.

Source

Generated

Figure 14: Face style transferring samples with CelebA dataset
by [127] 5.

However, the model su�ers from the clarity of the presen-
tation and evaluations. However, the authors claim better
results than [151] in term of inception scores, nonetheless
the results are only empirical and no theoretical analysis is
carried out. Doan et al. [57] introduced a method for
training the G against an ensemble of D. This problem for-
malized within the full-information adversarial framework,
where the ability of the algorithm is assessed to select com-
binations of Ds for providing the G with response during
learning. Hence, a reward function is used which returns the
Gs progress and accordingly update the combination weights
allotted to each D. Pu et al. [66] proposed to fuse disparity
maps from di�erent sources, while incorporating additional
information (intensity, gradient, etc.) into a refiner network
to better refine the raw disparity inputs. In [81], the authors
proposed a model called Photo-Sketch Synthesis by using
multi-adversarial networks, iteratively the proposed model
generates low resolution to high resolution images in an ad-
versarial way. The hidden layers of the generator are super-
vised to first create lower resolution images followed by in-
herent refinement through the network to form more realistic
images.

To produce extremely realistic images, in [81] the net-
work is normalized by adopting forward backward consis-
tency. This is carried out by introducing cycle consistency
losses at di�erent resolution levels, which are formulated as:

lcycAi = ÒRecAi * RAiÒ1 = ÒGB(GA(RA))i * RAiÒ1
lcycBi = ÒRecBi * RBiÒ1 = ÒGA(GB(RB))i * RBiÒ1

(14)

whereRAi andRBi denote the images in di�erent resolutions
and RecAi and RecBi represent the reconstruction outputs.
In [152], the authors proposed three approaches for produc-
ing music nots by using GANs. The approaches have di�er-
ent architectures and underlying assumptions. Bhattacharjee
and Das [153] proposed to use two stages of GANs to gen-
erate crisp and clear set of the future frames. The main con-
tribution lies in formulating two objective functions based
on the normalized cross correlation and the pairwise Con-
trastive divergence. Although the model is well discussed

5https://github.com/bluer555/CR-GAN

Shamsolmoali et al.: Preprint submitted to Elsevier Page 11 of 25

Table 1. Network architecture of our DCF model. conv(.,.,.)
denotes the kernel size, input and output channels.

Feature extracting network Predicting network
Layer In. Out./size In. Out./size

conv(7,3,64) Im f1 / 256 Im e1 / 256
conv(4,64,128) f1 f2 / 128 e1 e2 / 128
pooling f2 f

0
2 / 64 e2 e

0
2 / 64

conv(4,128,256) f
0
2 f3 / 64 [f 0

2, e
0
2] e3 / 64

f3 �? T3 f3 f
0
3 / 64 e3 T3 / 64

conv(1,256,256) f
0
3 f4 / 64 - -

6⇥FFC f4 f5 / 64 - -
convT(1,256,256) f5 f6 / 64 - -
convT(4,256,128) f6 f7 / 64 - -
convT(4,128,64) f7 f8 / 128 - -
convT(7,64,C) f8 f9 / 256 - -

context. Outputs of the local and global branches are then
combined. Two Fourier Units (FU) are used by the Spec-
tral Transform layer (Fig. 2 (d)) in order to capture both
global and semi-global features. The Fourier Unit (FU) on
the left represents the global context. In contrast, the Local
Fourier Unit (LFU) on the right side of the image takes in
one-fourth of the channels and focuses on the semi-global
image information. In a Fourier unit, the spatial structure is
generally decomposed into image frequencies using a Real
FFT2D operation, a frequency domain convolution operation,
and ultimately recovering the structure via an Inverse FFT2D
operation. Therefore, based on the encoder the network of
our decoder is defined as:

Ic = ⇢
�1(fL), (3)

in which ⇢
�1(.) denotes the decoder. Then, similar to image-

level filtering, we perform semantic filtering on extracted fea-
tures according to:

f̂l[r] =
X

s2N

T
l


[s� r]fl[s], (4)

in which r and s denote the image pixels’ coordinates,
whereas the N consist of N

2 closest pixels. T
l


signifies

the kernel for filtering the 
th component of Tl through its

neighbors N. To incorporate every element-wise kernel, we
use the matrix Tl as T

l


. Following this, Eq. (2) is modified

by substituting fl with f̂l. In addition, we use a predictive
network to predict the kernels’ behaviour in order to facilitate
their adaptation for two different scenes.

Tl = 'l(Im), (5)

in which 'l(.) denotes the predictive network to generate Tl.
In Fig. 2(a), we illustrate our image completion network
(⇢(.), ⇢(�1)

, and 'l(.)). It is trained using the L1 loss, percep-
tual loss, adversarial loss, and style loss, similar to predictive
filtering.

Fig. 3. Qualitative comparison on the Places2 dataset. Our
model outperforms state-of-art methods in terms of both
structure and texture preservation.

Input RFRNet JPGNet LaMaGT DCF (Ours)

Fig. 4. Qualitative comparison on CelebA data. Facial images
produced by DCF are more realistic, and have more charac-
teristic facial features compared to state-of-art methods.

3. EXPERIMENTS

In this section, the performance of our DCF model is com-
pared to state-of-the-art methods for image completion task.
Experiments are carried out on three datasets, CelebA-HQ
[6], Places2 [23], and Paris StreetView [4] at 256⇥ 256 reso-
lution images. With all datasets, we use the standard training
and testing splits. In both training and testing we use the di-
verse irregular mask (20%-40% of images occupied by holes)
given by PConv [8] and regular center mask datasets.

Performance Measures: The structural similarity index
(SSIM), peak signal-to-noise ratio (PSNR), and Frechet in-
ception distance (FID) are used as the evaluation metrics.
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Laboratory

• Gaming: Ubisoft LaForge
• Building Automation and IoT: Distech Controls
• Communications: Ericsson
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