

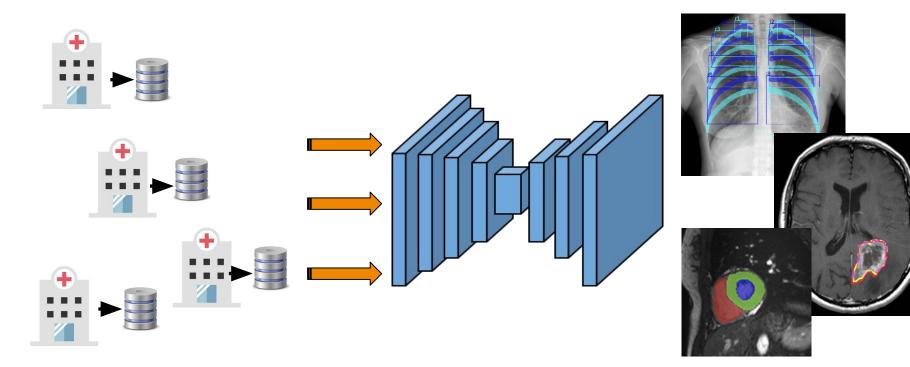
D'IMAGERIE, DE VISION ET D'INTELLIGENCE

Learning with limited supervision

Jose Dolz

ÉTS, Montreal

Motivation

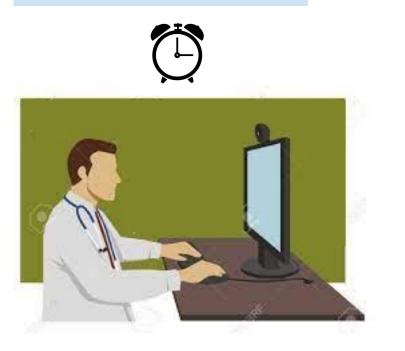


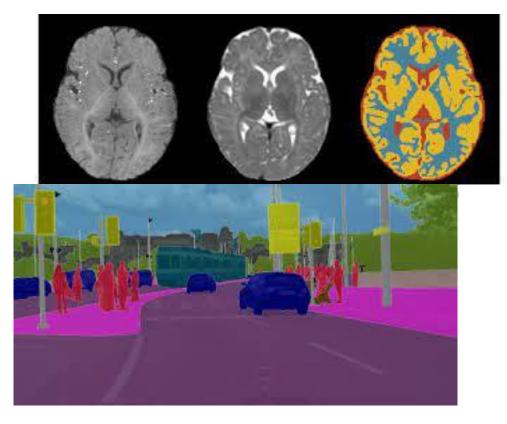
Very good performance in many tasks

Large labelled (pixel-wise) datasets

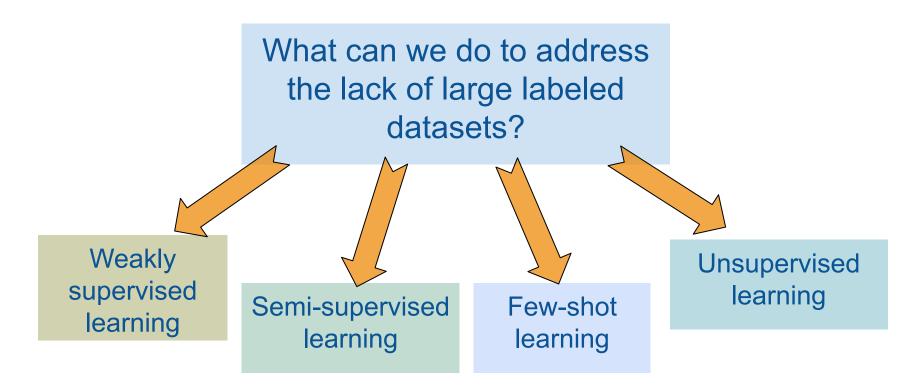
Motivation

Pixel-wise annotation is a time-consuming task...

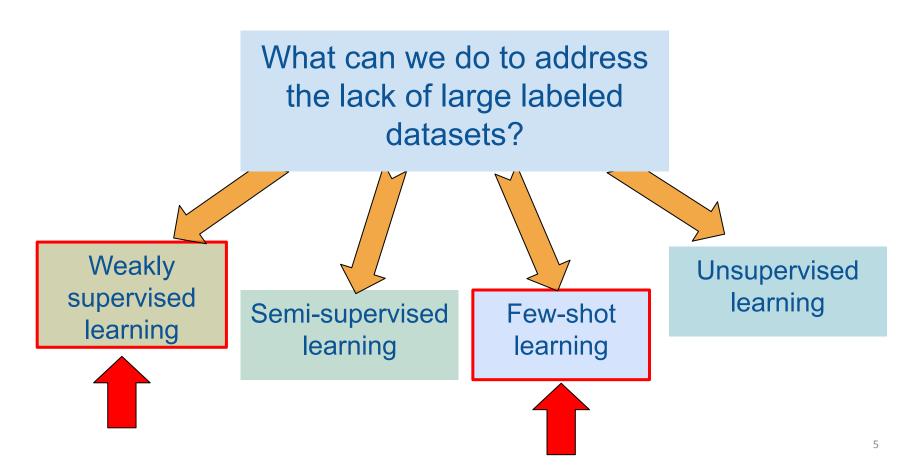




Potential solutions



Potential solutions



Weakly supervised learning

Image tags

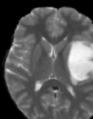


- Pathak et al., Constrained convolutional neural networks for weakly supervised segmentation, ICCV 2015
- Kervadec et al., Constrained-CNN losses for weakly supervised segmentation, MedIA 2019.

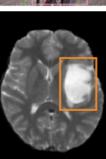
Image tags

Bounding boxes

Person Bike

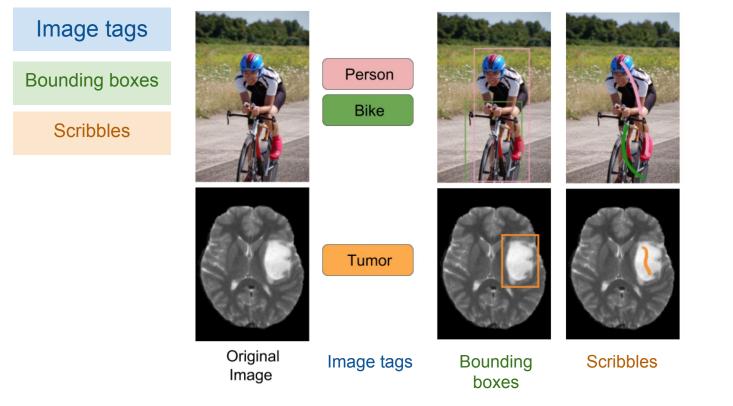


Tumor

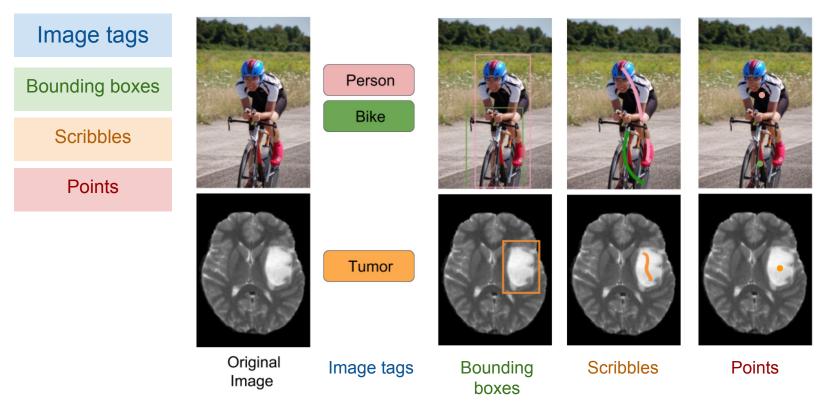


Original Image tags Bounding boxes

- Pathak et al., Constrained convolutional neural networks for weakly supervised segmentation, ICCV 2015
- Kervadec et al., Constrained-CNN losses for weakly supervised segmentation, MedIA 2019.

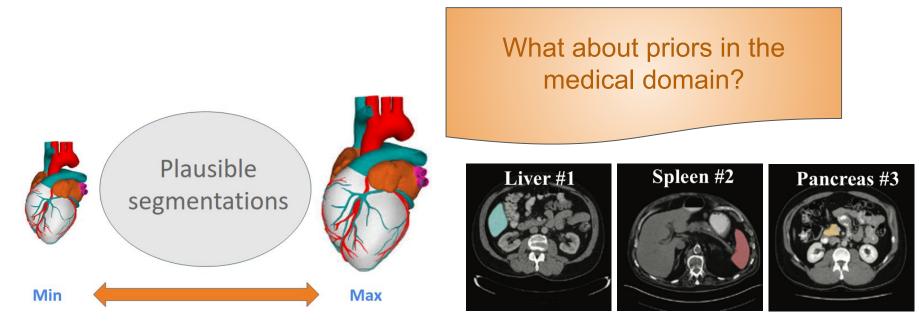


- Pathak et al., Constrained convolutional neural networks for weakly supervised segmentation, ICCV 2015
- Kervadec et al., Constrained-CNN losses for weakly supervised segmentation, MedIA 2019.



- Pathak et al., Constrained convolutional neural networks for weakly supervised segmentation, ICCV 2015
- Kervadec et al., Constrained-CNN losses for weakly supervised segmentation, MedIA 2019.

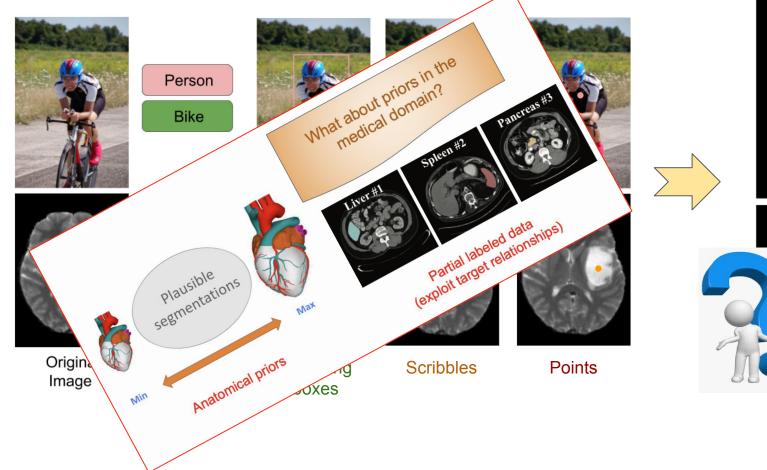
Knowledge-driven priors



Anatomical priors

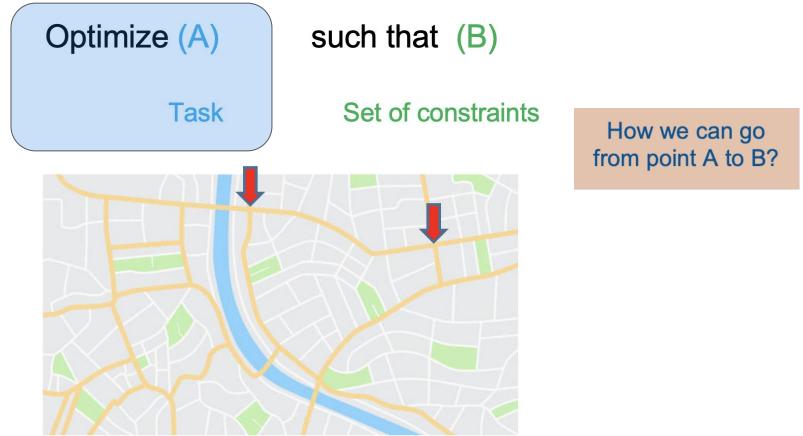
Partial labeled data (exploit target relationships)

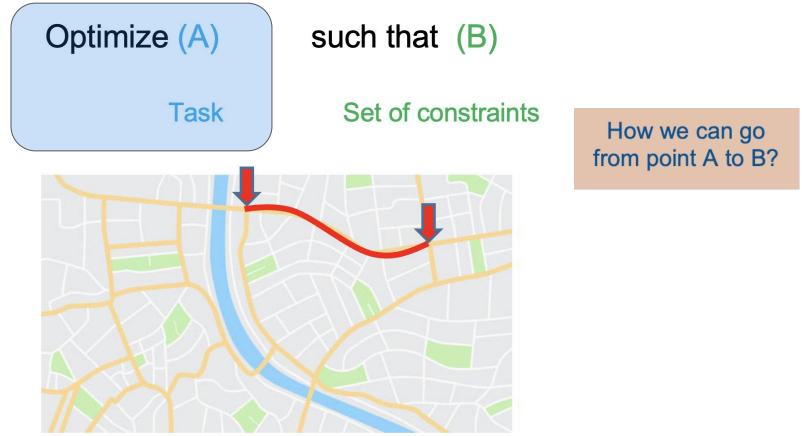
From global cues to pixel labels

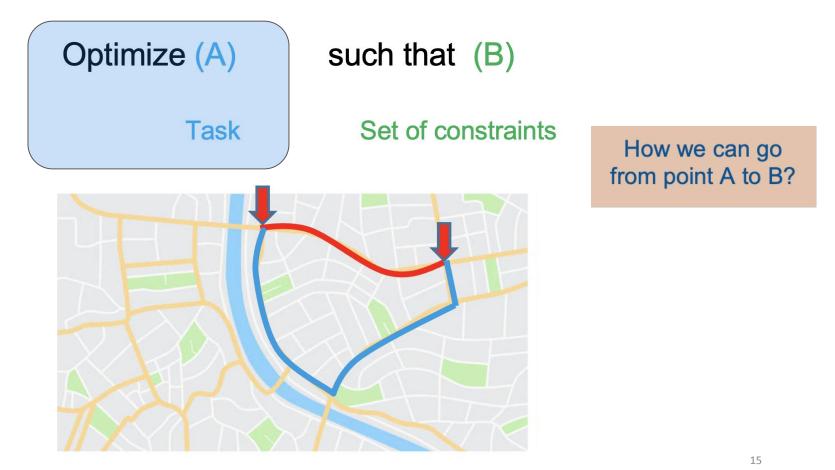


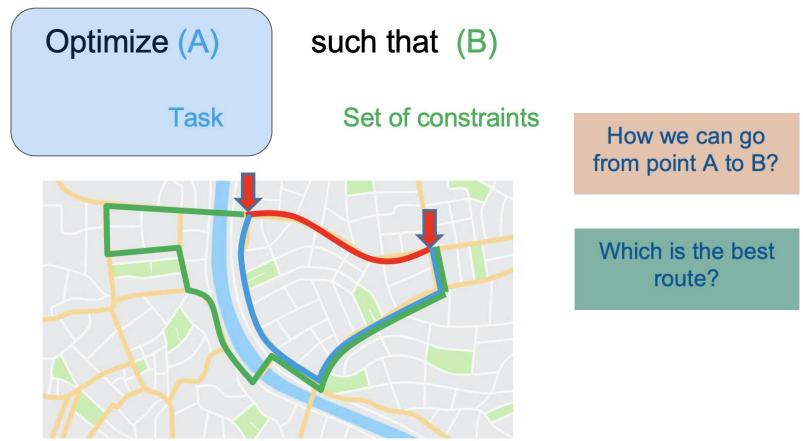
Optimize (A) such that (B)

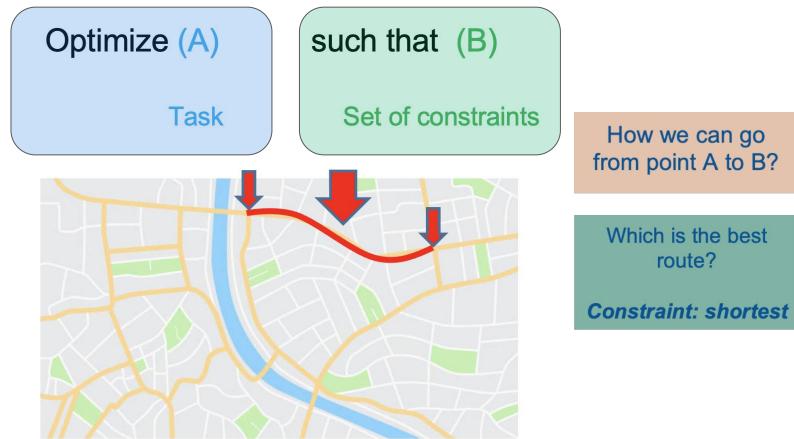
TaskSet of constraints

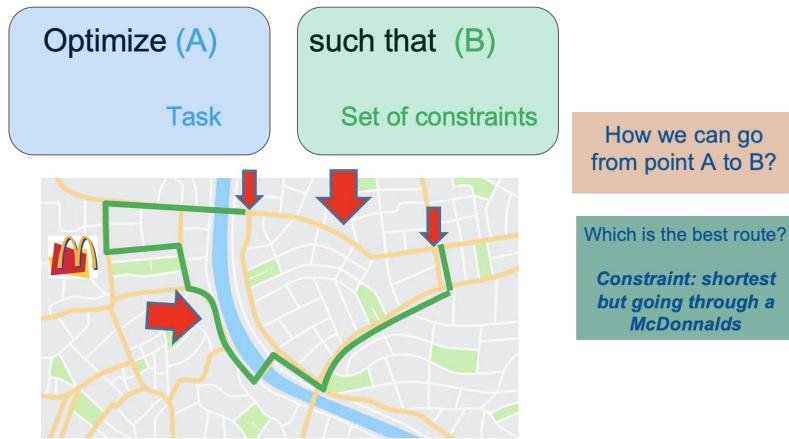


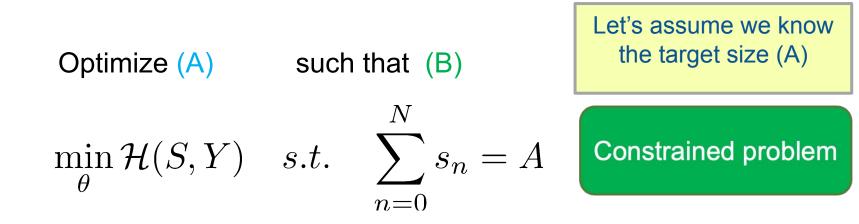


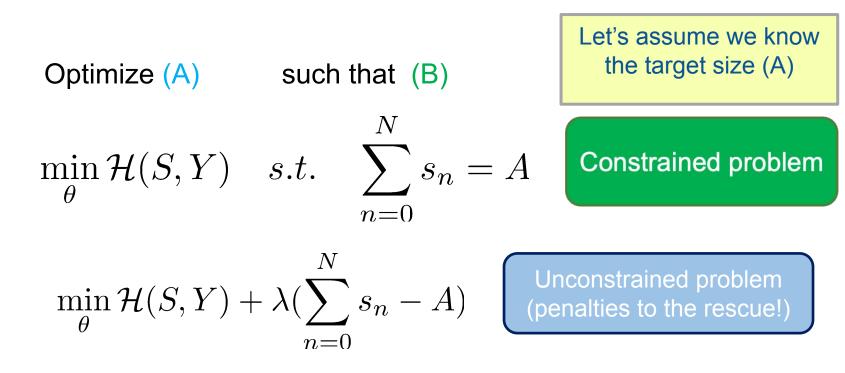








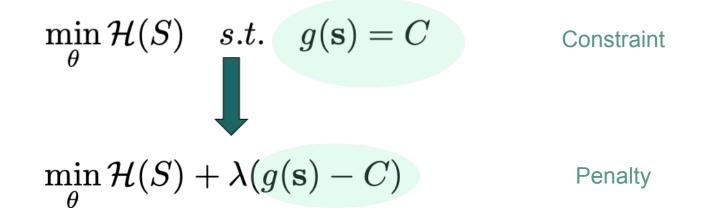




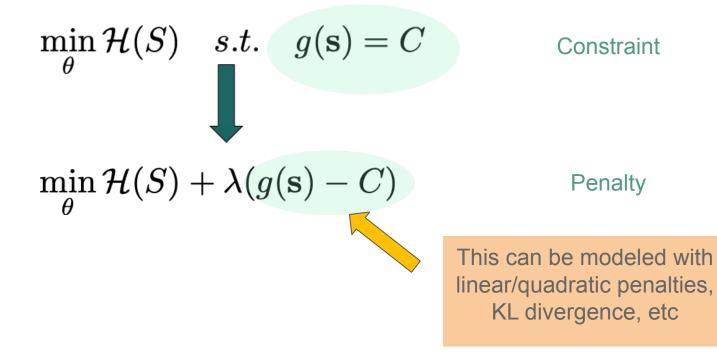
General definition

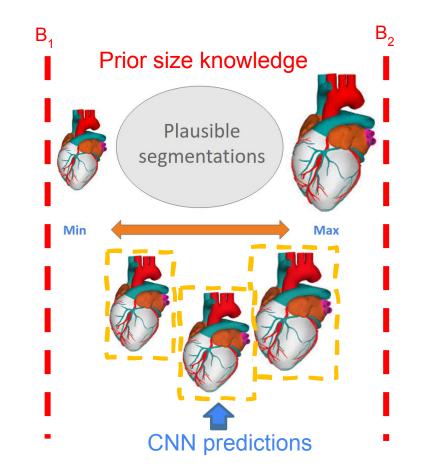
$$\min_{ heta} \mathcal{H}(S) \quad s.t. \quad g(\mathbf{s}) = C$$
 Constraint

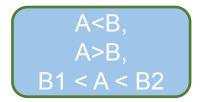
General definition

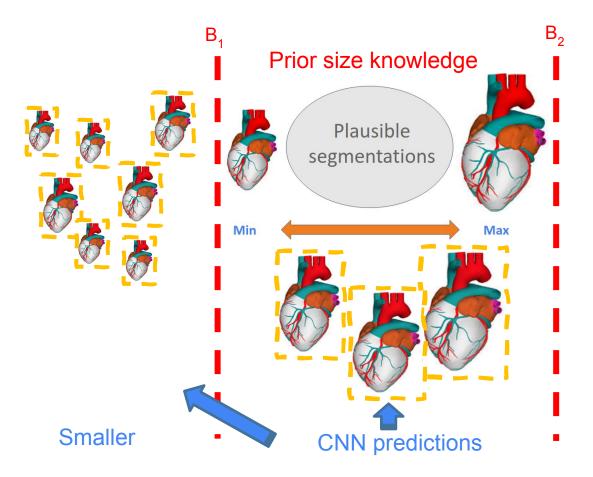


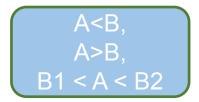
General definition

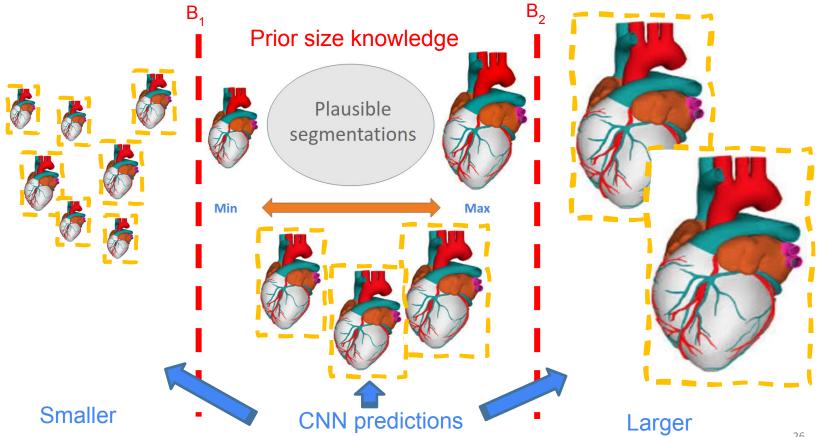


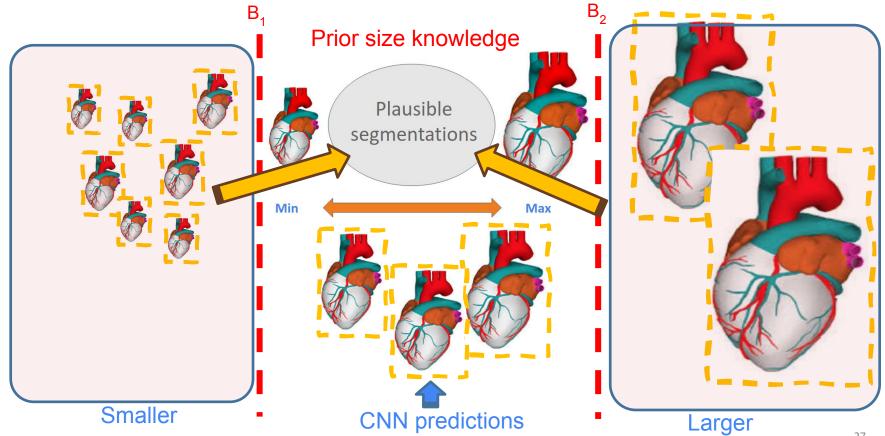












Size loss [Kervadec et al, MedIA'19]

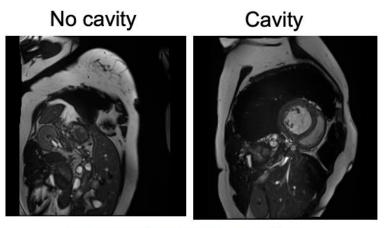
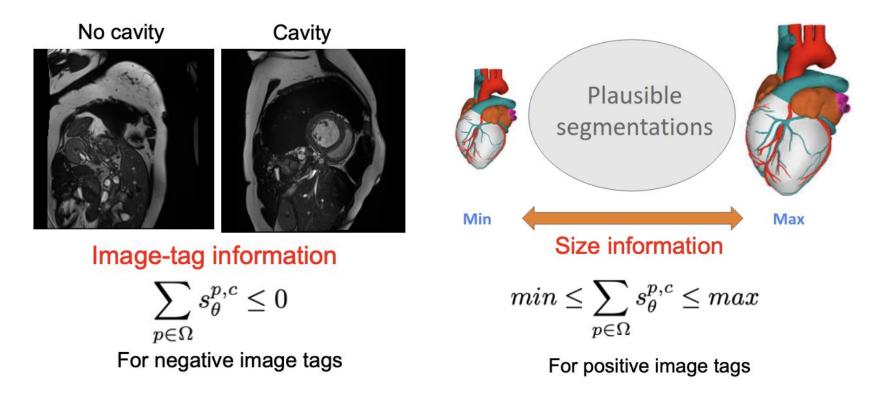


Image-tag information $\sum s^{p,c}_{\theta} \leq 0$

 $\overline{p\in\Omega}$ For negative image tags

Size loss [Kervadec et al, MedIA'19]



Size loss [Kervadec et al, MedIA'19]

Formal definition

$$\min_{\boldsymbol{\theta}} \ \mathcal{H}(S) \quad \text{s.t} \quad a \leq \sum_{p \in \Omega} S_p \leq b$$

Inequality constraint

[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019]

Size loss [Kervadec et al, MedIA'19]

Formal definition

$$\min_{\theta} \mathcal{H}(S) \quad \text{s.t} \quad a \leq \sum_{p \in \Omega} S_p \leq b \qquad \longrightarrow \qquad \mathcal{H}(S) + \lambda \mathcal{C}(V_S)$$

$$V_S = \sum_{p \in \Omega} \mathbf{s}_{\theta}^{p,c}$$

Size loss [Kervadec et al, MedIA'19]

CE on the labeled pixels (if any)

Formal definition

[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019]

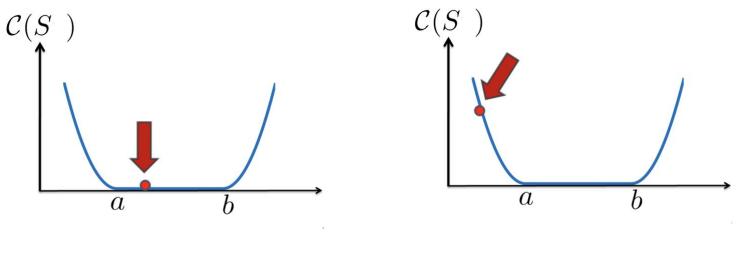
Size loss [Kervadec et al, MedIA'19]

 $\overline{V_S} = \sum_{p \in \Omega} L_r$ $\mathcal{H}(S) = -\sum log(s^p_\theta)$ $\mathcal{C}(V_S) = \begin{cases} (V_S - a)^2, & \text{if } V_S < a \\ (V_S - b)^2, & \text{if } V_S > b \\ 0, & \text{otherwise} \end{cases}$ $p \in \mathcal{L}$ CE on the labeled pixels (if any)

[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019]

Formal definition

Size loss [Kervadec et al, MedIA'19]

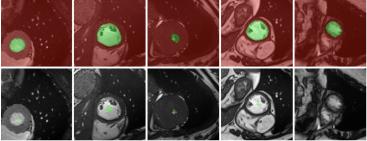


Constraint A satisfied

Constraint B violated

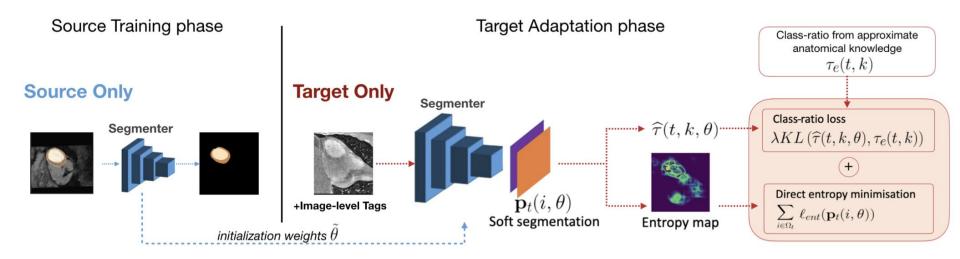
Size loss [Kervadec et al, MedIA'19]

	Model	Method	DSC (Val)
Weakly supervised	Partial CE		0.1497
	CE + Tags	Lagrangian Proposals (Pathak et al., 2015a)	0.7707
	Partial CE + Tags	Direct loss (Ours)	0.7924
	CE + Tags + Size*	Lagrangian Proposals (Pathak et al., 2015a)	0.7854
	Partial CE + Tags + Size*	Direct loss (Ours)	0.8004
	$CE + Tags + Size^{**}$	Lagrangian Proposals (Pathak et al., 2015a)	0.7900
	Partial CE + Tags + Size**	Direct loss (Ours)	0.8708
	CE + 3D Size**	Lagrangian Proposals (Pathak et al., 2015a)	N/A
	Partial CE + 3D Size**	Direct loss (Ours)	0.8580
Fully supervised	Cross-entropy		0.8872



[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019]

Source-free Domain Adaptation [Bateson et al., MICCAI'20]



KL divergence

KL divergence

Source-free: no access to source data when adapting

1-Train the network on the source domain

$$\min_{\theta} \sum_{p \in \mathcal{L}} l(\mathbf{y}^p, \mathbf{s}^p_{\theta})$$

Set of labeled
OURCE pixels

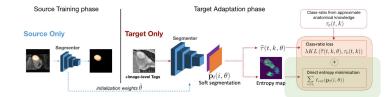
Bateson et al., Source-Relaxed Domain Adaptation for Image Segmentation. MICCAI'20

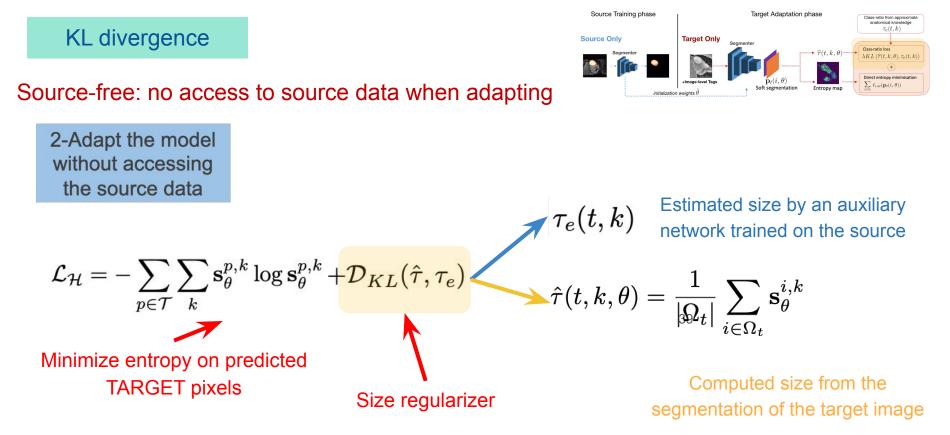
KL divergence

Source-free: no access to source data when adapting

2-Adapt the model without accessing the source data

$$\mathcal{L}_{\mathcal{H}} = -\sum_{p \in \mathcal{T}} \sum_{k} \mathbf{s}_{\theta}^{p,k} \log \mathbf{s}_{\theta}^{p,k} + \mathcal{D}_{KL}(\hat{\tau}, \tau_{e})$$
Minimize entropy on predicted
TARGET pixels





L2 Penalty

But we can do more than simply the size

Shape descriptors [Kervadec et al, MIDL'21]

Shape moment
$$\mu_{p,q}^{(k)}(s_{\theta}) := \sum_{i \in \Omega} s_{\theta}^{(i,k)} x_{(i)}^p y_{(i)}^q,$$

Central moment $\bar{\mu}_{p,q}^{(k)} := \sum_{i \in \Omega} s_{\theta}^{(i,k)} \left(x_{(i)} - \frac{\mu_{1,0}^{(k)}}{\mu_{0,0}^{(k)}} \right)^p \left(y_{(i)} - \frac{\mu_{0,1}^{(k)}}{\mu_{0,0}^{(k)}} \right)^q$

[Kervadec et al., Beyond pixel-wise supervision for segmentation: A few global shape descriptors might be surprisingly good!. MIDL'21] 40

L2 Penalty

But we can do more than simply the size

From shape and central moment

Shape descriptors [Kervadec et al, MIDL'21]

Volume

$$\mathfrak{V}^{(k)}(s_{\theta}) := \mu_{0,0}^{(k)}(s_{\theta}).$$

$$\label{eq:centroid} \begin{array}{ll} \mathbb{C}\text{entroid} & \mathfrak{C}^{(k)}(s_{\theta}) \coloneqq \left(\frac{\mu_{1,0}^{(k)}(s_{\theta})}{\mu_{0,0}^{(k)}(s_{\theta})}, \frac{\mu_{0,1}^{(k)}(s_{\theta})}{\mu_{0,0}^{(k)}(s_{\theta})}\right). \\ & \text{Length} & \mathfrak{L}^{(k)}(s_{\theta}) \coloneqq \sum_{i,j \in \mathcal{G}_{\Omega}} |s_{\theta}^{(i,k)} - s_{\theta}^{(j,k)}| L_{\Omega,i,j}. \end{array}$$

[Kervadec et al., Beyond pixel-wise supervision for segmentation: A few global shape descriptors might be surprisingly good!. MIDL'21] 41

Setting

Training on **base** classes

Setting

Training on **base** classes

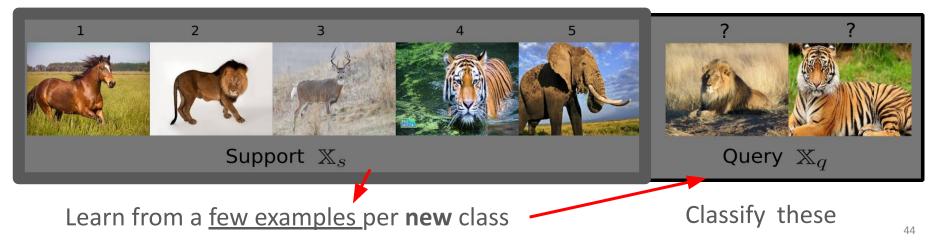
Few-shot tasks at testing time

43

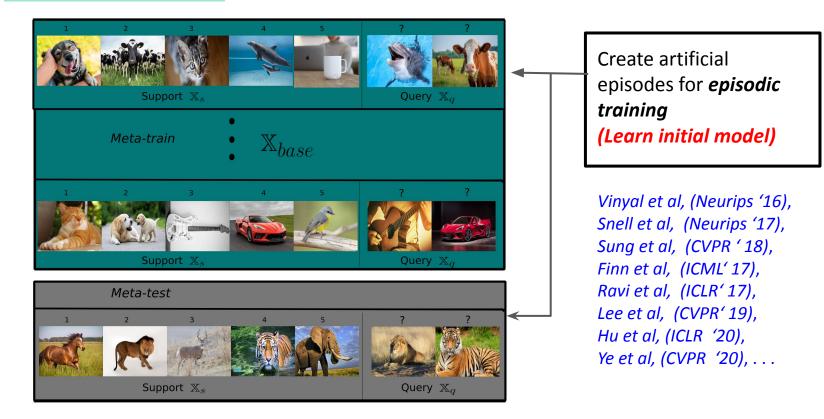
Setting

Training on **base** classes

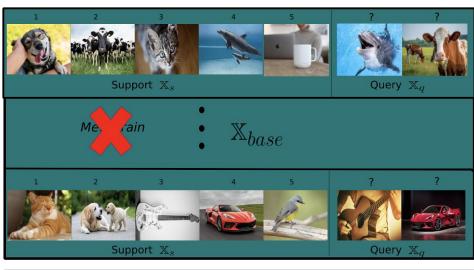
Few-shot tasks at testing time

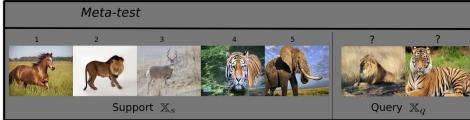


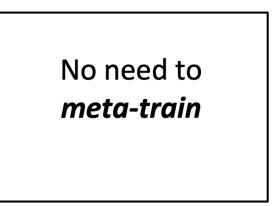
Literature



Literature







[Chen et al., ICLR'19] [Tian et al., ECCV'20] [Dhillon et al., ICLR'20] [Ziko et al., ICML'20] [Boudiaf et al., NeurIPS'20], [Veilleux et al., NeurIPS'21],...

Classification

TIM [Boudiaf et al, NeurIPS'20]

1) Standard training on the base classes to get an initial model

Classification

TIM [Boudiaf et al, NeurIPS'20]

1) Standard training on the base classes to get an initial model

2) During adaptation:

$$\min_{\mathbf{W}} \lambda \cdot \mathbf{CE} - \widehat{\mathcal{I}}_{\alpha}(X_{\mathcal{Q}}; Y_{\mathcal{Q}})$$

Classification

TIM [Boudiaf et al, NeurIPS'20]

1) Standard training on the base classes to get an initial model

2) During adaptation:

$$\min_{\mathbf{W}} \lambda \cdot \mathbf{CE} - \widehat{\mathcal{I}}_{\alpha}(X_{\mathcal{Q}}; Y_{\mathcal{Q}})$$

$$\uparrow$$
CE on supervised images (i.e., support)

Classification

TIM [Boudiaf et al, NeurIPS'20]

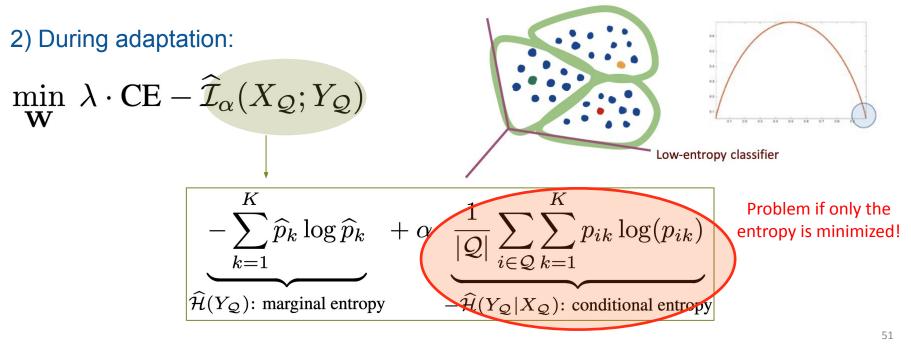
1) Standard training on the base classes to get an initial model

2) During adaptation:

Classification

TIM [Boudiaf et al, NeurIPS'20]

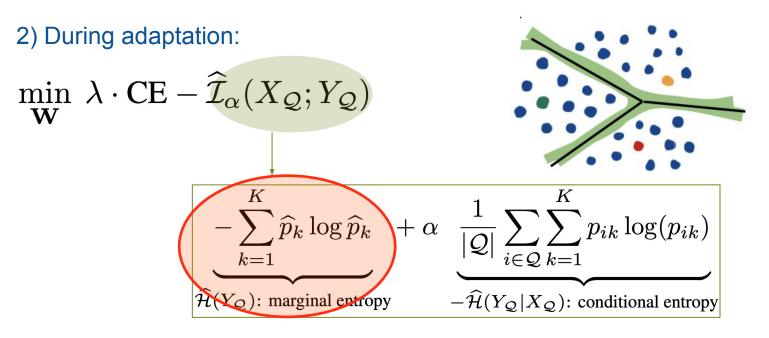
1) Standard training on the base classes to get an initial model



Classification

TIM [Boudiaf et al, NeurIPS'20]

1) Standard training on the base classes to get an initial model



Classification

TIM [Boudiaf et al, NeurIPS'20]

			mini-ImageNet		tiered-ImageNet		CUB	
Method	Transd.	Backbone	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
MAML [9]		ResNet-18	49.6	65.7	~_ 2	-	68.4	83.5
RelatNet [40]		ResNet-18	52.5	69.8	_	-	68.6	84.0
MatchNet [45]		ResNet-18	52.9	68.9	_	-	73.5	84.5
ProtoNet [38]		ResNet-18	54.2	73.4	_	-	73.0	86.6
MTL [39]	×	ResNet-12	61.2	75.5	_	-	-	-
vFSL [50]		ResNet-12	61.2	77.7	_	-	-	×_*
Neg-cosine [26]		ResNet-18	62.3	80.9	_	-	72.7	89.4
MetaOpt [22]		ResNet-12	62.6	78.6	66.0	81.6	-	8 — 9
SimpleShot [46]		ResNet-18	62.9	80.0	68.9	84.6	68.9	84.0
Distill [41]		ResNet-12	64.8	82.1	71.5	86.0	-	-
RelatNet + T [14]		ResNet-12	52.4	65.4	-	-	-	-
ProtoNet + T [14]		ResNet-12	55.2	71.1	-	-	-	-
MatchNet+T [14]		ResNet-12	56.3	69.8	-	-	-	-
TPN [28]		ResNet-12	59.5	75.7	-	-	-	-
TEAM [34]	1	ResNet-18	60.1	75.9	-	-	-	-
Ent-min [7]	•	ResNet-12	62.4	74.5	68.4	83.4	-	-
CAN+T [14]		ResNet-12	67.2	80.6	73.2	84.9	-	-
LaplacianShot [51]		ResNet-18	72.1	82.3	79.0	86.4	81.0	88.7
TIM-ADM		ResNet-18	73.6	85.0	80.0	88.5	81.9	90.7
TIM-GD		ResNet-18	73.9	85.0	79.9	88.5	82.2	90.8

No meta-learning

Segmentation

RePRI [Boudiaf et al, CVPR'21]

* The initial model is trained over the base classes following standard segmentation training (i.e., CE)

Segmentation

RePRI [Boudiaf et al, CVPR'21]

* The initial model is trained over the base classes following standard segmentation training (i.e., CE) min $\frac{1}{|\mathcal{L}|} \sum_{p \in \mathcal{L}} l(\mathbf{y}^p, \mathbf{s}^p_{\theta}) - \lambda_{\mathcal{H}} \frac{1}{|\mathcal{Q}|} \sum_{j \in \mathcal{Q}} \mathbf{s}^j_{\theta} \log(\mathbf{s}^j_{\theta}) + \lambda_{KL}(\hat{\mathbf{s}}^{\mathcal{Q}}_{\theta} \log(\frac{\hat{\mathbf{s}}^{\mathcal{Q}}_{\theta}}{\tau}))$

CE on supervised images (i.e., support)

Segmentation

RePRI [Boudiaf et al, CVPR'21]

* The initial model is trained over the base classes following standard segmentation training (i.e., CE) $-\frac{1}{|\mathcal{L}|}\sum_{p\in\mathcal{L}}l(\mathbf{y}^p,\mathbf{s}^p_{ heta})$ $-\left(\lambda_{\mathcal{H}}\frac{1}{|\mathcal{Q}|}\sum_{j\in\mathcal{Q}}\mathbf{s}_{\theta}^{j}\log(\mathbf{s}_{\theta}^{j})+\lambda_{KL}(\hat{\mathbf{s}}_{\theta}^{\mathcal{Q}}\log(\frac{\hat{\mathbf{s}}_{\theta}^{\mathcal{Q}}}{\tau})\right)$ min CE on supervised Entropy on unsupervised images (i.e., support)

images (i.e., queries)

Segmentation

RePRI [Boudiaf et al, CVPR'21]

* The initial model is trained over the base classes following standard segmentation training (i.e., CE) $-\frac{1}{|\mathcal{L}|}\sum_{p\in\mathcal{L}}l(\mathbf{y}^p,\mathbf{s}^p_{ heta})$ $- \left(\lambda_{\mathcal{H}} \frac{1}{|\mathcal{Q}|} \sum_{j \in \mathcal{Q}} \mathbf{s}_{\theta}^{j} \log(\mathbf{s}_{\theta}^{j}) + \left(\lambda_{KL} (\hat{\mathbf{s}}_{\theta}^{\mathcal{Q}} \log(\frac{\hat{\mathbf{s}}_{\theta}^{\mathcal{Q}}}{\tau})\right) \right)$ min CE on supervised KL (to impose target Entropy on unsupervised images (i.e., support) proportions) images (i.e., queries) $\hat{\mathbf{s}}_{ heta}^{\mathcal{Q}} = rac{1}{|\mathcal{Q}|} \sum_{j \in \mathcal{Q}} \mathbf{s}_{ heta}^{j}$

57

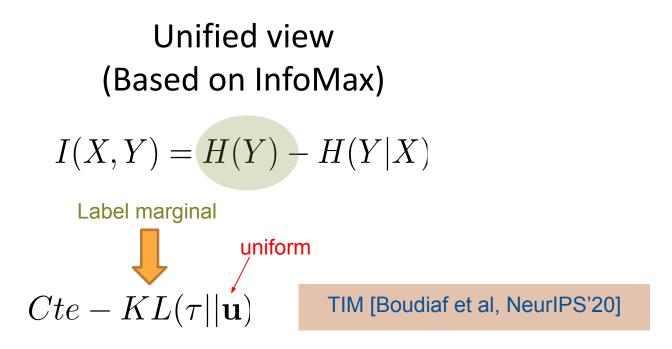
 $\tau \in [0,1]$

Prior proportion

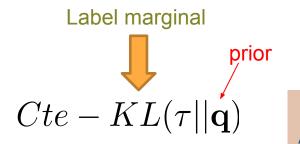
$$I(X,Y) = H(Y) - H(Y|X)$$

Posteriors

Label marginal

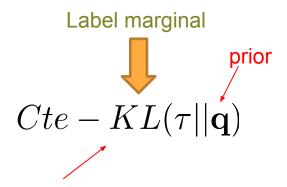


I(X,Y) = H(Y) - H(Y|X)



RePRI [Boudiaf et al, CVPR'21] AdaEnt [Bateson et al., MICCAI'20]

I(X,Y) = H(Y) - H(Y|X)



Relax to inequality constraints

Size loss [Kervadec et al, MedIA'19] Shape descriptors [Kervadec et al., MIDL'21]

$$I(X,Y) = H(Y) - H(Y|X)$$

But there are more!!

Weakly supervised segmentation

Size loss [Kervadec et al, MedIA'19] Shape descriptors [Kervadec et al., MIDL'21]

Few-shot learning

TIM [Boudiaf et al, NeurIPS'20] RePRI [Boudiaf et al., CVPR'21]

Unsupervised Domain adaptation

AdaEnt [Bateson et al, MICCAI'19]

$$I(X,Y) = H(Y) - H(Y|X)$$

But there are more!!

Weakly supervised segmentation

Size loss [Kervadec et al, MedIA'19] Shape descriptors [Kervadec et al., MIDL'21]

Few-shot learning

TIM [Boudiaf et al, NeurIPS'20] RePRI [Boudiaf et al., CVPR'21]

Unsupervised Domain adaptation

AdaEnt [Bateson et al, MICCAI'19]

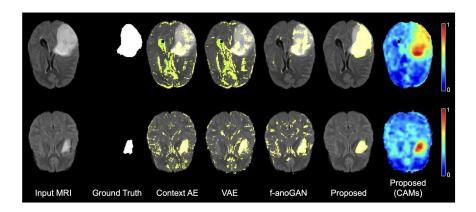
Generalized Few-shot segmentation DiAM [Hajimiri et al, CVPR'23]

Mixed-supervised segmentation

[Dolz et al, IPMI'21] [Liu et al, MedIA'22]

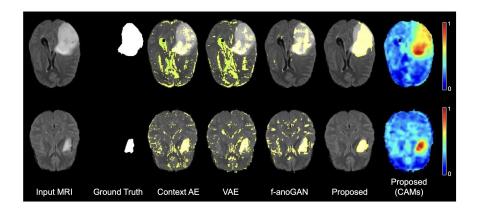
Generalized class discovery MiB [Chiaroni et al, Arxiv'22]

Unsupervised anomaly segmentation



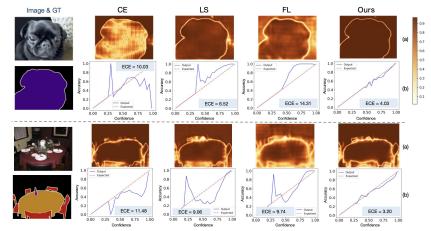
Silva-Rodriguez et al, BMVC'21 Silva-Rodriguez et al, MedIA'22

Unsupervised anomaly segmentation



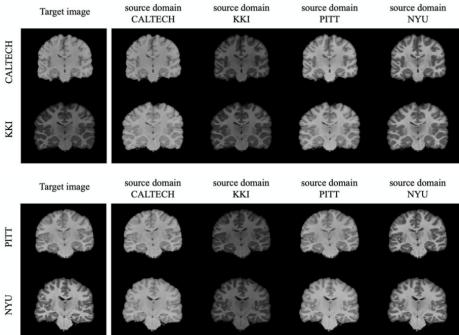
Silva-Rodriguez et al, BMVC'21 Silva-Rodriguez et al, MedIA'22

Calibrating neural networks



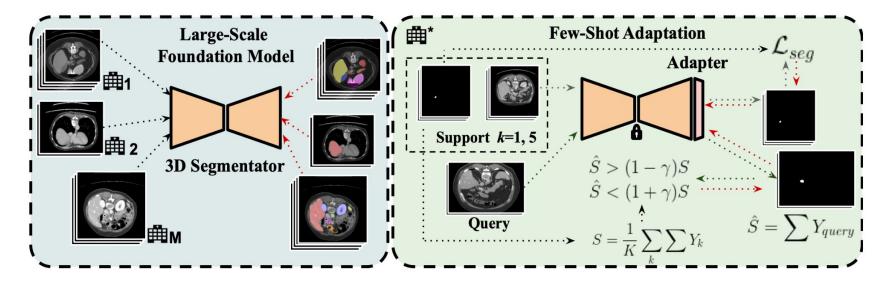
MbLS [Liu et al, CVPR'22] CALS [Liu et al, CVPR'23] MEEP [Larrazabal et al, MICCAI'23] [Murugesan et al, MedIA'23] [Murugesan et al, Arxiv'23]

Data harmonization



Harmonizing-Flows [Beizaee et al, IPMI'23]

Foundation models

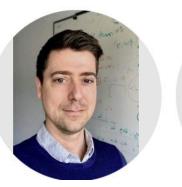


Silva-Rodriguez et al, Arxiv'23

Take-home message

- The lack of labeled data open the door for many interesting challenges
- Leveraging prior domain knowledge (in the form of constraints, or others methods) can further improve the discriminative performance.
- Few constraints have been explored under low-labeled data regime
- Room for improvement (many opportunities beyond weakly and few-shot supervised segmentation)

A big thank to my collaborators!



I am hiring!

Prompted text in Dall-E: 'an image with the text 'I am hiring', with a realistic bear holding a beer