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Motivation

Large labelled Very .good performance
(pixel-wise) datasets in many tasks
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Motivation

Pixel-wise annotation is a
time-consuming task...
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Potential solutions

What can we do to address
the lack of large labeled

datasets?
Weakly Unsu pervised
SURERTSEe Semi-supervised Few-shot learning
learning

learning learning
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Weakly supervised

Data-driven priors (cues) .
learning

Image tags

E;
¥

Original Image taas
Image J g

Pathak et al., Constrained convolutional neural networks for weakly supervised segmentation, ICCV 2015
Kervadec et al., Constrained-CNN losses for weakly supervised segmentation, MedIA 2019.



Data-driven priors (cues)

Image tags

Bounding boxes

Original Image tags Bounding

Image boxes

+ Pathak et al., Constrained convolutional neural networks for weakly supervised segmentation, ICCV 2015
» Kervadec et al., Constrained-CNN losses for weakly supervised segmentation, MedIA 2019.



Data-driven priors (cues)

Image tags
Bounding boxes

Scribbles

Original Image tags Bounding Scribbles

Image boxes

+ Pathak et al., Constrained convolutional neural networks for weakly supervised segmentation, ICCV 2015
» Kervadec et al., Constrained-CNN losses for weakly supervised segmentation, MedIA 2019.



Data-driven priors (cues)

Image tags
Bounding boxes
Scribbles

Points

Original
Image

Image tags Bounding Scribbles Points
boxes

Pathak et al., Constrained convolutional neural networks for weakly supervised segmentation, ICCV 2015
Kervadec et al., Constrained-CNN losses for weakly supervised segmentation, MedIA 2019.



Knowledge-driven priors

Plausible |
- |
segmentations |

What about priors in the
medical domain?

Anatomical priors

Partial labeled data
(exploit target relationships)
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From global cues to pixel labels

Scribbles Points
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Constrained optimization (CNN)
Optimize (A) such that (B)

Set of constraints
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Constrained optimization (CNN)

a N
Optimize (A) such that (B)

Task Set of constraints
\_ . How we can go

from point A to B?
4
4
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Constrained optimization (CNN)

a O
Optimize (A) such that (B)

Task Set of constraints
\_ . How we can go

l\) from point A to B?
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Constrained optimization (CNN)

\

g Optimize (A)

Task

)

such that (B)

Set of constraints

How we can go
from point A to B?
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Constrained optimization (CNN)

g Optimize (A)

Task
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such that (B)

Set of constraints

How we can go
from point A to B?
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Constrained optimization (CNN)

k

- Optimize (A)

Task
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/such that (B)
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Set of constraints

gl

How we can go
from point A to B?
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Constrained optimization (CNN)

- Optimize (A)

Task

/such that (B) A

Set of constraints

»

l‘l

How we can go
from point A to B?
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Constrained optimization (CNN)

Let’'s assume we know
Optimize (A) such that (B) the target size (A)

N
minH(S,Y) s.t. Z s, = A [ESUBETEIJLIE
0

n=()
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Constrained optimization (CNN)

Let’'s assume we know

Optimize (A) such that (B) the target size (A)
N
pHET) at Y=
n—=()
N
min H(S,Y) + )\(Z Sp — A) [ ]

n=_0
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General definition

Equality constraints

min H(S) s.t. g(s) =

0

C

Constraint

A

21
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Equality constraints

General definition

meinH(S) it. g(s) =

min#(S) + A(g(s) — C)

C

Constraint

Penalty
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Equality constraints A=B

General definition

mein H(S) st. g(s)=C Constraint
min H(S) + A(g(s) — C) Penalty

x This can be modeled with

linear/quadratic penalties,
KL divergence, etc
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Inequality constraints {
BZ

Prior size knowledge

Plausible

segmentations

CNN predictions
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I Prior size knowledge

Plausible

segmentations

Smaller \ CNN predictions

Inequality constraints {
BZ
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Inequality constraints

B B,
I Prior size knowledge

Plausible

segmentations

Smaller \

CNN predictions

Larger
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Inequality constraints

B B,
I Prior size knowledge

Plausible
segmentations

Smaller

Larger



Inequality constraints

Size loss
[Kervadec et al, MedIA'19]

Image-tag information

> s <0
pE)
For negative image tags
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Inequality constraints

Size loss
[Kervadec et al, MedIA'19]

Plausible
segmentations |

Min
Image-tag information Size information
§ : sy <0 min < Z sb® < max
ped pe

For negative image tags For positive image tags
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Inequality constraints

Size loss
Formal definition [Kervadec et al, MedIA'19]

b

N

mein H(S) st Z Sp

pel

Inequality constraint

[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019] 30



Inequality constraints

Size loss
Formal definition [Kervadec et al, MedIA'19]

min H(S) st a< ) S <b mE) H(S)+AC(Vs)

¢ pel \

[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019] 31



Inequality constraints

Size loss
Formal definition [Kervadec et al, MedIA'19]

pel

min #(S) st a< ) S,<b m) H(S)+AC(V5)\

H(S) = — 3 log(s})

peL
CE on the labeled pixels (if any)

[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019] 32



Inequality constraints

Size loss

Formal definition [Kervadec et al, MedIA'19]

min H(S) st a< ) S <b mm) H(S)+AC(V5)\

g pel
_ O oDsC

pES
. p
H(S) = ;log(se (Vs —a)?, ifVg<a
P C(Vs) =13 (Vs —b)?, ifVg>b
CE on the labeled pixels (if any) 0, otherwise

[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019] 33



Inequality constraints

Size loss
Visual intuition [Kervadec et al, MedIA'19]

C(S ) C(s)
A A l
a b > a b ”
Constraint A satisfied Constraint B violated

[Kervadec et al., Constrained-CNN losses for weakly supervised segmentation. MedIA 2019] 34



Inequality constraints

Size loss
[Kervadec et al, MedIA'19]

Model Method DSC (Val)
Weakly supervised Partial CE 0.1497
CE + Tags Lagrangian Proposals (Pathak et al., 2015a) 0.7707
Partial CE + Tags Direct loss (Ours) 0.7924
CE + Tags + Size* Lagrangian Proposals (Pathak et al., 2015a) 0.7854
Partial CE +Tags + Size* Direct loss (Ours) 0.8004
CE 4 Tags + Size** Lagrangian Proposals (Pathak et al., 2015a) 0.7900
Partial CE + Tags + Size** Direct loss (Ours) 0.8708
CE + 3D Size** Lagrangian Proposals (Pathak et al., 2015a) N/A
Partial CE + 3D Size** Direct loss (Ours) 0.8580
Fully supervised Cross-entropy 0.8872

[Kervadec et al., Constrained-CNN Ibsses for weakly supervised ségmenttion. MedIA 2019] 35



Inequality constraints

Source-free Domain Adaptation
[Bateson et al., MICCAI’'20]

KL divergence

Source Training phase Target Adaptation phase (Ciasa-ratio from approximate
anatomical knowledge
T('(t, l\')
Source Only Target Only
Segmenter v
Seamentsr : ( Class-ratio loss “
. : AKL (7(t, k,6), 7e(t, k))
s ' ....... " { /+\)
' Direct entropy minimisation
. +Imaae=-level 1aas MV L L U ) sssssssssssp D o cceseneeh ’ Zﬂ pln’(pl(z’ 0))

Soft segmentation Entropy map \\

Bateson et al., Source-Relaxed Domain Adaptation for Image Segmentation. MICCAI'20 36



Inequality constraints

Source Training phase Target Adaptation phase

KL divergence

Source-free: no access to source data when adapting

. p P
meanl(y ,Sg)

pelL,

/

Set of labeled
SOURCE pixels

Bateson et al., Source-Relaxed Domain Adaptation for Image Segmentation. MICCAI'20 37



Inequality constraints

) Source Training phase Target Adaptation phase c";ﬂ::y%’;{’.;,f{?{:j; ???? ‘
KL divergence —— e |
eeeeeeeee ‘ = 7t &, 6) AKL (7(t, k,0), e(t, k)
2 R
Source-free: no access to source data when adapting ,
2-Adapt the model
without accessing

the source data

Ly =8 Z Zse’k log s5°* +D (7, Te)

pET k

~7

Minimize entropy on predicted
TARGET pixels

Bateson et al., Source-Relaxed Domain Adaptation for Image Segmentation. MICCAI'20 38



Inequality constraints

KL divergence Source Only Target Only Segmenter X.”;L‘
eeeeeeeee ! '
I . ’ - ‘lmgg’ Soﬂ%efgation !p l gtre((
Source-free: no access to source data when adapting , e (L
2-Adapt the model
without accessing

the source data _ _ N
(t k) Estimated size by an auxiliary

network trained on the source

k k A
— ZZSG’ logsy” +D g1 (7, Te)
pET k 7(t,k,0) = Mzs

] 1€Q

Minimize entropy on predicted

TARGET pixels : :
Size regularizer

Bateson et al., Source-Relaxed Domain Adaptation for Image Segmentation. MICCAI'20 39




Inequality constraints

L2 Penalty

But we can do more than simply the size

Shape descriptors
[Kervadec et al, MIDL'21]

Shape moment /,1,1()]2(89) = ng k)m(z)y(z),

1€Q
| 'u(k) M(k)
Central moment uz(,kg = Z sg & (ﬂv(z‘) - %) (i‘/(i) (()kl))
1€ MO’O /1’0’0

[Kervadec et al., Beyond pixel-wise supervision for segmentation: A few global shape descriptors might be surprisingly good!. MIDL’21]
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Inequality constraints

L2 Penalty
But we can do more than simply the size
From shape and central moment Shape descriptors
[Kervadec et al, MIDL'21]

Volume P (s9) := ,u(() (sg)-

H1 0(30) .U (30)

k

Centroid el )(30) (

Mo 0(30) M (80)

Laplacian
K i,k <

Length £k (sg) == Z |5¢S)z ) - Sg )|Lﬂ,i,j'

[Kervadec et al., Beyond pixel-wise supervision for segmentation: A few global shape descriptors might be surprisingly good!. MIDL’21]
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Setting

Few-shot learning

Training on base classes
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Few-shot learning

Setting Training on base classes

| h (‘ " 1 ‘
f!}? \rv‘(-":\

Learn from a few examples per new class
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Few-shot learning

Setting

Training on base classes

Learn from a few examples per new class Classify these
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Literature

Few-shot learning

Create artificial
episodes for episodic
training

(Learn initial model)

Vinyal et al, (Neurips ‘16),
Snell et al, (Neurips ‘17),
Sung et al, (CVPR “18),
Finnetal, (ICML 17),
Ravi et al, (ICLR*17),

Lee etal, (CVPR*19),

Hu et al, (ICLR ‘20),

Ye et al, (CVPR ‘20), ...

45



Literature

Few-shot learning

No need to
meta-train

[Chen et al., ICLR"19]
[Tian et al., ECCV’20]
[Dhillon et al., ICLR’20]
[Ziko et al., ICML 20]
[Boudiaf et al., NeurlPS’20],
[Veilleux et al., NeurIPS’'21],...
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Few-shot learning

TIM
Classification [Boudiaf et al, NeurlPS’20]

1) Standard training on the base classes to get an initial model
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Few-shot learning

TIM
Classification [Boudiaf et al, NeurlPS’20]

1) Standard training on the base classes to get an initial model

2) During adaptation:

AN

H\17\i/'n A - CE —Ia(XQ; YQ)
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Few-shot learning

TIM
Classification [Boudiaf et al, NeurlPS’20]

1) Standard training on the base classes to get an initial model

2) During adaptation:

min A\ - CE — .'/Z\.a(XQ; YQ)
W
CE on supervised
images (i.e., support)
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Few-shot learning

TIM
Classification [Boudiaf et al, NeurlPS’20]

1) Standard training on the base classes to get an initial model

2) During adaptation:
min A\ - CE — .’/Z\.a(XQ; YQ)

\%%
\ On test (query) samples
K
_Zﬁk logﬁk T |Q| Zzpzk log pzk
k=1 P 1€Q k=1
#(Yg): marginal entropy —H(Yg|Xo): conditional entropy
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Classification

Few-shot learning

[Boudiaf

1) Standard training on the base classes to get an initial model

2) During adaptation:

AN

min A\ - CE — Ia(XQ; YQ)

|

W

Low-entro

TIM
et al, NeurlPS’20]

py classifier

| -

K

k=1

—> Prloghi +

g

-~

H (Yo ): marginal entropy

Problem if only the

>entropy is minimized!
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Few-shot learning

TIM
Classification [Boudiaf et al, NeurlPS’20]

1) Standard training on the base classes to get an initial model
2) During adaptation: \..: :

~ L ) @
min )\CE—Ia(XQ,YQ) '.. ° 5

K
< — > Drlogpi \+ o |Q|22pzklogpzk

=1 1€Q k=1

-~

—H (Yo |Xo): conditional entropy
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Few-shot learning

Classification

No meta-learning

TIM
[Boudiaf et al, NeurlPS’20]
mini-ImageNet tiered-ImageNet CUB

Method Transd. Backbone 1-shot 5-shot 1-shot  5-shot 1-shot 5-shot
MAML [9] ResNet-18 49.6 65.7 - - 68.4 83.5
RelatNet [40] ResNet-18 52.5 69.8 - - 68.6 84.0
MatchNet [45] ResNet-18 52.9 68.9 - - 73.5 84.5
ProtoNet [38] ResNet-18 54.2 734 - - 73.0 86.6
MTL [39] X ResNet-12 61.2 75.5 - - - -
vFSL [50] ResNet-12 61.2 71.7 - - - -
Neg-cosine [26] ResNet-18 62.3 80.9 - - 2.1 89.4
MetaOpt [22] ResNet-12 62.6 78.6 66.0 81.6 - -
SimpleShot [46] ResNet-18 62.9 80.0 68.9 84.6 68.9 84.0
Distill [41] ResNet-12 64.8 82.1 71.5 86.0 - -
RelatNet + T [14] ResNet-12 524 65.4 - - - -
ProtoNet + T [14] ResNet-12 55.2 71.1 - - - -
MatchNet+T [14] ResNet-12 56.3 69.8 - - - -
TPN [28] ResNet-12 59.5 Vi 0 - - - -
TEAM [34] v ResNet-18 60.1 75.9 - - - -
Ent-min [7] ResNet-12 62.4 74.5 68.4 83.4 - -
CAN+T [14] ResNet-12 67.2 80.6 132 84.9 - -
LaplacianShot [51] ResNet-18 0281 82.3 79.0 86.4 81.0 88.7
TIM-ADM ResNet-18 736 85.0 80.0 88.5 81.9 90.7
TIM-GD ResNet-18 73.9 85.0 79.9 88.5 82.2 90.8
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Few-shot learning

RePRI
Segmentation [Boudiaf et al, CVPR’21]

* The initial model is trained over the base classes following
standard segmentation training (i.e., CE )
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Few-shot learning

RePRI
Segmentation [Boudiaf et al, CVPR’21]

* The initial model is trained over the base classes following
standard segmentation training (i.e., CE)

min

CE on supervised
images (i.e., support)
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Few-shot learning

RePRI
Segmentation [Boudiaf et al, CVPR’21]
* The initial model is trained over the base classes following
standard segmentation-training{i.e., CE )
o, 85
min + Ak 1.(8g log(7
CE on supervised Entropy on unsupervised

images (i.e., support) images (i.e., queries)
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Few-shot learning

RePRI
Segmentation [Boudiaf et al, CVPR’21]
* The initial model is trained over the base classes following
standard segmentation-training{i-e., CE ) T
e é OQ \\m\v‘
min -+ )\KL(ng log (—)),
- T -
- CE on supervised Entropy on unsupervised
images (i.e., support) images (i.e., queries)
. - 1 :
. 29 _ j
89 = — Z Sg
QI JEQ
T € [0, 1]
et

Prior proportion .




Unified view
(Based on InfoMax)

I[(X,Y)=H(Y) - H(Y|X)

Label marginal Posteriors



Unified view
(Based on InfoMax)

[(X,Y)=H(Y) - HY|X)

Label marginal

@ uniform
/

C'te — KL(7-| |u] TIM [Boudiaf et al, NeurlPS’20]
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Unified view
(Based on InfoMax)

[(X,Y)=H(Y) - HY|X)

Label marginal

4

Cte — KL(7||q)

rior

RePRI [Boudiaf et al, CVPR’21]
AdaEnt [Bateson et al., MICCAI'20]
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Unified view
(Based on InfoMax)

[(X,Y)=H(Y) - HY|X)

Label marginal

ﬂ /prior

Cte — KL(7||q)
S

Relax to inequality constraints

Size loss [Kervadec et al, MedIA'19]
Shape descriptors [Kervadec et al., MIDL'21]
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Unified view
(Based on InfoMax)

I[(X,Y)=H(Y) - H(Y|X)

But there are more!!

Weakly supervised segmentation
Size loss [Kervadec et al, MedIA'19]
Shape descriptors [Kervadec et al., MIDL'21]

Few-shot learning
TIM [Boudiaf et al, NeurlPS’20]
RePRI [Boudiaf et al., CVPR’21]

Unsupervised Domain adaptation
AdaEnt [Bateson et al, MICCAI'19]
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Unified view
(Based on InfoMax)

I[(X,Y)=H(Y) - H(Y|X)

But there are more!!

Weakly supervised segmentation
Size loss [Kervadec et al, MedIA'19]
Shape descriptors [Kervadec et al., MIDL'21]

Few-shot learning
TIM [Boudiaf et al, NeurlPS’20]
RePRI [Boudiaf et al., CVPR’21]

Unsupervised Domain adaptation
AdaEnt [Bateson et al, MICCAI'19]

Generalized Few-shot segmentation
DiAM [Hajimiri et al, CVPR’23]

Mixed-supervised segmentation
[Dolz et al, IPMI’21]
[Liu et al, MedIA22]

Generalized class discovery
MiB [Chiaroni et al, Arxiv'22]
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Other research topics

Unsupervised anomaly segmentation

Proposed

Input MRI Ground Truth  Context AE VAE f-anoGAN Proposed (CAMSs)

Silva-Rodriguez et al, BMVC’21
Silva-Rodriguez et al, MedIA'22
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Other research topics

Unsupervised anomaly segmentation

» 2@

4

Proposed

Input MRI Ground Truth  Context AE VAE f-anoGAN Proposed (CAMSs)

Silva-Rodriguez et al, BMVC’21
Silva-Rodriguez et al, MedIA'22

Calibrating neural networks

CE

Image & GT

. ’ ECE =10.03
o | o
Soa J 2
02 P \
0.0{ 7 =
000 025

o

- eapecs

Y
i
0.8
/\\/ goe
f/ 04
4
02
ECE 06

FaAY
P \\/ ECE=11.48

Confidence

MbLS [Liu et al, CVPR’22]
CALS [Liu et al, CVPR’23]
MEEP [Larrazabal et al, MICCAI'23]
[Murugesan et al, MedIA'23]
[Murugesan et al, Arxiv'23]
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CALTECH

KKI

PITT

NYU

Other research topics

Data harmonization

source domain source domain source domain source domain
CALTECH KKI PITT NYU

Target image

source domain source domain source domain source domain

Target image
CALTECH KKI PITT NYU

Harmonizing-Flows [Beizaee et al, IPMI'23]

66



Other research topics

Foundation models

( ) Large-Scale Few-Shot Adaptation \
: Foundation Model Adapter ..... :
| .
I |
1l |
I |
l ) |
I v ‘, I
e (1+~.-)s
' A S
| = 1 - . S = );[uu'y I
\ S=g 2L !
R SRR - A TR S -

Silva-Rodriguez et al, Arxiv'23
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Take-home message

The lack of labeled data open the door for many interesting challenges

Leveraging prior domain knowledge (in the form of constraints, or others

methods) can further improve the discriminative performance.
Few constraints have been explored under low-labeled data regime

Room for improvement (many opportunities beyond weakly and few-shot

supervised segmentation)
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A big thank to my collaborators!
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| am hiring]!

Prompted text in Dall-E: ‘an image with the text 'l am hiring', with a realistic bear holding a beer



