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Online Convex Optimization

Protocol: Online Convex Optimization

1: given: (bounded) decision set W C R¢

2: fort=1,...,T

3: Player chooses w; € W

4 Nature outputs convex loss ¢; : YW — R

[Zinkevich ’03]

T T
Goal: minimize regret Rr(u) = Zﬁt(wt) — Z li(u)
t=1 t=1

No assumptions on how the losses are generated

Nature can be an adversary who knows the algorithm!



Example: Online Spam Filtering

Training a linear model to filter spams

Email z: € R outcome y: =1 —2-1{x; is spam} € {—1, +1}

Get w; from an OCO algorithm

(we, x) <0 Ty

Spam Inbox
m-

Proxy: Minimize a convex loss: e.g., ¢; : w — (y; — (w, z4))?

Regret: filter almost as well as the best linear model in hindsight



Plenty of Other Examples

see surveys by [Hazan ’16, Orabona ’19]

- Prediction with Expert Advice [Freund and Schapire ’97]
- Portfolio Selection [Cover '91]

- ....and many more

- With connections to batch optimisation, and practical impact:
AdaGrad was introduced in the OCO framework.

he prequel. The ADAGRAD algorithm with full matrix divergences entertains bounds of the form

Ro(T) =0 (||x*||2tr(GlT/2)) and Ry(T) = O (max I, —x*||2tr(G1T/2)) .

t<T

[Duchi et al "11]



Online Gradient Descent
Wit1 = PI‘OjW< w,—n V& w) )

Theorem: OGD [Zinkevich ‘03]

If OGD is tuned with a constant step size n =4/ D/GT where G is an upper bound

on the gradient norms, and D is the diameter of the action set,

R, (Ww*) < ¢ GD\/T

... and this is not improvable



Optimality of OGD

Theorem: OCO Minmax Lower Bound [Zinkevich '03]

For any algorithm, there exists a sequence of losses for which G is an upper

bound on the gradient norms, D is the diameter of the action set, and

max R(w™) > ¢ GDﬁ

wxXew



Optimality of OGD

Theor




Optimality of ODG

Theorem: OCO Minmax Lower Bound [Zinkevich 03]

For any algorithm, there exists a sequence of losses for which G is an upper

bound on the gradient norms, D is the diameter of the action set, and

max R(w™) > ¢ GDﬁ

w e

Proof:
Z(w)=(w,g,) where g, ==+ G e; with probability 1/2

The expected regret of any player against these losses is ¢ GDﬁ ,
so there is at least one sequence for which the regret is lower bounded.

Construction involves:
- Linear losses
- Pure Noise



Online Spam Filtering |l

Email z: € R*, outcome y: = 1 — 2 - 1{x; is spam} € {—1,+1}

(we, x¢) < 0 Ty
Spam

el ( N Inbox

Do we expect the data to be like in the lower bound: pure noise?

To what extent is it adversarial?



Adapting to Easy Data

Losses are often far from worst-case

- Small gradients [Zinkevich’03, Duchi’10], Simple optimal
comparator [Orabona, Cutkosky]

- Both [Mhammedi, Koolen 20, Mayo, Hadiji, van Erven ’22]
- Predictable gradients [Rakhlin, Sridharan’13]

- Many more... (curved losses, extra information available, etc.)

- ...? Applications can inspire theory here!



Adapting to Stochastic Data

Theorem: [Sachs, Hadiji, Van Erven, Guzman ‘23]

There exists an algorithm such that, if the losses come from i.i.d. data with [E [ft(w)] = F(w)
and Fis L-smooth, then

E[R(w*)] < coD\/T + LD?

where ¢ = max [E[Var( Vft(wt))] .

1<t<T

In the worst-case, this same algorithm enjoys the optimal rate

R;(w*) < ¢'GD\/T

- The algorithm is Optimistic Follow-the-Regularized-Leader

- Generalizes the linear (L = 0) case, known by [Rakhlin, Sridharan "13]
- Exploits iid-ness if available, but does not assume it

- Actually interpolates between fully stochastic and adversarial cases



Bandits

Action space & Losses £, : of — R

Fort=1,....7T, ...:

- Player selects action a, € <f

- Player observes loss Z,(a,)

Regret Ry = Z ¢ (a;) — min Z £{a*)

a*ed

Need to balance between:
- Exploring: acquiring information about actions
- Exploiting available information to optimise losses



Adaptation
in (Stochastic) Bandits

Same question as in OL:
Can we have nice guarantees for nice data,
while staying (close to) optimal in the worst-case?

The cost of exploration can make adaptation difficult, or even impossible
Adapting to regular loss functions when the action set is continuous [Hadiji "19]

Adapting to the range of the losses [Hadiji, Stoltz '22]

Again, a close look at the lower bounds hints that
common assumptions are not relevant to practice



Thank youl!



