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Generative Modeling

m Formulation: Given samples (x;)X-; from distribution 7, generate new

samples distributed approximately from .

m Numerous applications, e.g. data augmentation for downstream tasks (e.g.
videos for self-driving cars), high-resolution nowcasting, data-driven priors

for inverse problems/Bayesian inference.

Context Deep Generative Nowcast
Past 20mins Model of Rain Next 90mins

From Ho et al., NeurIPS 2020 from Ravuri et al. (2021)
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Generative Models
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Denoising Diffusion Models
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Denoising Diffusions aka Score-Based Generative Models

Public

m Having a hard time keeping up with the literature?
» List of references: https://scorebasedgenerativemodeling.github.io/
m Advantages of the method:
» State-of-the-art results Dhariwal and Nichol (2021); Karras et al. (2022).
» High flexibility Poole et al. (2022); Rombach et al. (2022); Balaji et al. (2022);
Saharia et al. (2022).
» Theoretical analysis De Bortoli et al. (2021b); Chen et al. (2022); Pidstrigach
(2022); Lee et al. (2022).
m Some drawbacks:

» Statistical understanding is still limited.

o

Figure 1: DDM results. Image extracted from Dhariwal and Nichol (2021).
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Introduction: Noising Mechanism

—— Stochastic process

Bimodal distribution progressively diffused to Gaussian distribution

Song et al. ‘Score-Based Generative Modeling through Stochastic Differential Equations’ (2021) b"



Public

Introduction: Denoising Mechanism

—— Reverse stochastic process

Song et al. ‘Score-Based Generative Modeling through Stochastic Differential Equations’ (2021) b"



Discrete-Time: Noising Process

Forward diffusion process (fixed)

Data Noise
e it Bite el bl K
Fig. from Kreis, Gao and Vahdat, tutorial CVPR 2022.
m At sample level: Given data sample X, set for k =0,...,K — 1
Xir1 = /1 — BXe + VBerr1, €y ~N(0,I)
m At distribution level:
K—1
aro) = o) T[] alrersle)

data dist N (Xg413vV/1—Bx, BI) q

50 q(xk|x%0) = N (xk; /arxo, (1 — a)I) with e = (1 — 8)* (Ho et al., 2020)



Discrete-Time: Denoising Process

Reverse denoising process (generative)
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vee K

m At distribution level: Ancestral Sampling

K—i
q(xo:x) = qr(xx) | ] aCxelxesr)
k=0
where Bayes’ rule yields
intriclable
(el i) = ) — T
Gi+1(Xk+1)

m At sample level: Sample Xx ~ gk then Xi ~ q(-|Xk+1) fork=K —1,...,0.
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Noise
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Discrete-Time: Denoising Process
m First step: Use the fact that

Public

) = q(Xk+1] %) g (xx)

X X xi) exp(lo X
Qr+1(Xk+1) q(Xe+1|xk) exp(log ge(xi))

q(Xk| Xre4-1
where gr =~ gr1; and a Taylor expansion yields

log gk (xx) ~ 108 qrt1(%kt1) + V108 qry1 (1) (o — Xer1) ()

m Second step: Combining q(xx1|xx) and ()

q(xk|xkt1) = q(xkt1|xk) exp[V 10g qt1(k+1) " (3% — Xpp1)]
1

~ N(xk; =3 (xk+1 + ﬁYlog qkjl(kaD ; 51) (o)

intractable




From Discrete-Time to Continuous-Time

Public

m Noising diffusion: consider the diffusion (X:):co, 1]
dXt — —’thdt -+ \/ Z’YdBt, XO ~ qo-

where (B:):c[o,7] is @ Brownian motion and let g; = Law(X;).

~~ transports data to noise, i.e. go to qr =~ N (0, I).

m Denoising diffusion (Anderson, 1982) : the time-reversal (Y;):c[o,7] With

Y; = X7_,; verifies

dYt e ’Y(Yt -+ 2V lOg qT_t(Yt))dt -+ A/ Z’det, Yo o~ dT-

where (W;);c[o,7] is a Brownian motion.

~~ transports noise to data, i.e. g7 =~ N (0,1) to qo.

O

m Problem: Score V log g: is intractable.



Score Approximation
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m “Ideal” denoising diffusion:
dYt = ’Y(Yt —+ ZV lOg qT_t(Yt))dt —+ \/ Z’det, Yo ~ dqr,

induces path measure IP.

m Approximate denoising diffusion:
dYt — ’Y(Yt —|—239(T_ t,Yt))dt—l_ A/ Z’det, YO NN(O, I),

induces path measure Qg.

m Learning the score: Minimizing KL(IP||Qeg) w.r.t. € is equivalent to

minimizing
il
£(0) =/ E[||se (2, X:) — V log q:(X.)||?]d¢
0

:/O Elllso(t, X) — ¥ log qro(X|Xo)|[Flde + . @



What's the score?

m Tweedie’s formula

Vlog q:(X:) = E[V log g0 (X:[Xo)].

m Explicit expression: Ornstein-Uhlenbeck transition

qro(X¢|X0) = N (%45 v/ouxo, (1 — au)I)

SO
denoiser

EXyX:| —X
Vlogqt(Xt):\/a_t XolX:] - a3

1—C¥t

Learning the score <= Learning a denoiser

Public
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Benefits of Continuous-Time

m Sophisticated numerical integrators, predictor-corrector schemes.

m Probability flow ODE (Song et al., 2021):
dXt = —fY(Xt == V log qt(Xt))dt, XO ~ (o

admits same marginals as noising diffusion; i.e. Law(X;) = ¢;
~~ transports data to noise, i.e. gy to g7 = N (0,1).

m Deterministic generation: Let Y; = X1_; then
dY; = v(Y; 4+ Viog qr_:(Y;))dt, Yo ~ qr

~~ transports noise to data, i.e. g, to gy =~ N (0, I).
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Extensions Beyond R*

1 Riemmanian manifolds (De Bortol et al,, 2022; Huang et al., 2022)

Public

applications to protein backbone generation (Watson et al,, 2022) and v) iw

joint grasp and motion optimization (Urain et al, 2022). G"?R’“w e
n Discrete state-space (Campbell et al., 2022): allows to exploit fast ; ESEE T i

samplers from chemical physics. S

0.004 0.008 0.016 0.032 0.064 0.128

n Simplex (Benton et al, 2022; Richemond et al, 2022): application to
compositional data.

(a) GP Regression (b) Attentive Latent NP (c) Neural Diffusion Process (ours)

Dutortoir et al, “Neural Diffusion Processes”

# Function spaces (Dutordoir et al., 2022; Kerrigan et al,, 2022) &



Trans-dimensional generative modeling via jump

diffusions

m Data of varying dimension: molecules with varying number of

atoms, videos with varying number of frames; i.e. 7 lives on U™ R".

m Difficulties: Training n,,, models expensive and conditional

generation would require predicting n given observations.

m Jump Diffusion: We diffuse and kill components until one remains
and is Gaussian, time-reversal adds components.

Algorithm 1: Sampling the Generative Process

e
X ~ prer(X) =I{n = 1}N(x;0, Ls)
while ¢ > 0 do
if uw < N ¢(X)8¢ with u ~ 1(0, 1) then
Sample x4, i ~ A?(x*,i|X)
X « ins(X,x*4 )
end
X ¢ X— gf(X)ﬁt + gt\/Sze with € ~ N(0, I.q)
X ¢ (n,x),t «t— 6t
end

Visualization of the jump-diffusion backward generative process on molecules. b"

Campbell et al., arXiv:2305.16261, NeurlPS 2023



Beyond Diffusion Models: Transport using ODEs

Public
Diffusion models: noising “transports” m, to 7 ~ N (0, I),
denoising does the reverse.

Limitations: What if T is not large enough? What if you want 71 be
non-normal? Do we need diffusions at all?

ODE Transport Models: stochastic interpolants (Albergo and
Vanden-Eijnden, 2023), flow matching (Lipman et al., 2023), rectified
flow (Liu et al., 2023): Let X, ~ 7 then X; = ®(X,) ~ m; where ® is
built using an ODE whose drift is learned using samples of 7, 7.

O

Connections to Optimal Transport unclear.



Transport using ODEs: Flow Matching

m Path Measure: Let X, ~ 7y, X; ~ 71 and

Xt: (1—t)X0+tX1 ~ Tt

T T

Liu et al., “Flow Straight and Fast”, ICLR 2023

(a) Linear interpolation

5, = %5 41 — ) Xp

m Useless Transport ODE: As X; = X, + t(X; — Xj) then the ODE

! —X —X ——1 ! X X
1t 1 0 1 + 9 0 0, i 1y

is such that X; ~ ;.

Public
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Transport using ODEs: Flow Matching
m Useful Transport ODE: The ODE with drift

EX;|X; =x] —x

V(t, X) = ]E[Xl = X0|Xt = X] = 1— ¢

is such that X; ~ ;!

m Learning the Drift: vp (t,x) = (x3(¢,x) — x)/(1 — t) = v(t,x) by
minimizing

L(0) =E[l|xo(t, X)) — X4 |[°]

Liu et al., “Flow Straight
and Fast”, ICLR 2023

(a) Linear interpolation (b) Rectified flow Z;
X: =tX71 + (1 — )Xo induced by (Xo, X1)

Public
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Transport using ODEs: Flow Matching
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Non-optimal transport Optimal transport

Liu et al., “Flow Straight and Fast”, ICLR 2023 bl’



Optimal Transport

m The unpaired problem: Public

» Learn a coupling II between 7o and 7.
» Learn to sample from this coupling II.

Optimal transport (Monge-Kantorovich formulation)

Find a coupling IT* such that

IT* = argmin{ [p4, pa ||x — y|[*dII(x, y) , Il = mo, II; = m}.

> Sample from 7o and then IIj}, to get a sample from ;.

m Limitations of the formulation: m Solution? Entropic regularization!

» Can be unstable. » H is the entropy. @
2 T
» Even for discrete data, very costly. » 0" > 0 a regularization parameter.



Schrodinger Bridge: From Static to Dynamic

Static formulation

IT* = argmin{ [o4, ga 3 ||x — y||*dIL(x, y) — c’H(II) ,II, = mo, II; = m}.

xRd 2

Dynamic formulation

Find P* a path measure such that
P* = argmin{KL(P|Q) , Py = mo, P1 = m1}.

» Q is associated with (0B:),c[o,1], With (B:),c[0,1] @ Brownian motion.

m From dynamic to static: P ; = IT*.

(Xf)te[().l] ~ P~

A

—_— e e e e e e -

,-_-____-—-
| e p———_

-----------------------------------
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Schrodinger Bridge Problem
Dynamic formulation (Schrédinger Bridge)

Find P* a path measure such that
P* = argmin{KL(P|Q) ,Py = mo, P1 = m}.

» Q is associated with (oB);co,1], With (B;);c[o,;] @ Brownian motion.

m P is called the Schrodinger Bridge.
m Can be thought of:

» Closest path measure to QQ such that,
» the marginal constraints are respected.

m Given II*, how to sample from P*?

» Sample (Xo,X;) ~ IT*.
» Sample X; = (1 — )Xo + tX; + o4/t(1 — t)Z, Z ~ N(0,1d).
» “P”* is in the reciprocal class of Q” (see Thieullen (1993)).

Public
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Schrodinger Bridge
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G

~ conditions on path
| conditions on endpoints (o)



Iterative Markovian Fitting

IP reciprocal

_ alternate projection
~ preserved properties

Public
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Iterative Markovian Fitting

_ alternate projection
| preserved properties

Public
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Markovian Projection
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m Start with P non-Markov, (X;:).c[0,1] ~ P,

dXt — b(t, Xt, )dt =5 O'dBt
future dependency
with b(t, X;, X;) linear in X;.
m Markovian projection = remove the dependency on the future.

» Preserve marginals for free!

m In practice:
» Loss function ||xg (¢, X.:) — X,||>.
» At equilibrium: xg(t, x;) = E[X;|X,].
> dXt B b(t,Xt, xg(t,Xt))dt—I—O'dBt.

m The special case of flow matching (Lipman et al., 2022):

> (Xo,X;) ~ o ®@ 71, X = tX;1 + (1 — t)Xo. @
> dXt — (X1 — Xt)/(l — t)dt.



Reciprocal Projection
m P in the reciprocal class if for (X:):c[0,1] ~ IP:
> X, =(1—t)Xo + tX; +0o+/t(1 — t)Z, Z ~ N(0,1d).
» “Same bridge as the Brownian bridge”.

Public

m Projection on the reciprocal class (no neural network involved).

Original dynamics

Preserving the coupling

T T T T T T
/
K) Reciprocal projection ‘\

O




Diffusion Schrodinger Bridge Matching
m Diffusion Schrédinger Bridge matching;:

» Alternating projections on Markov measures and reciprocal class.
» two networks: xp (backward), x, (forward).

m DSBM iteration 1: training of the backward

» Sample from (Xo, X;) ~ 7 ® 7.
» Sample X; = (1 — )X, + tX; + o+/t(1 — t)Z,Z ~ N(0,1d).
» Loss ||xs(1 — t,X;) — Xol|%

XONﬂ'O X1N7T1

Public
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Diffusion Schrodinger Bridge Matching

Public

m Diffusion Schrédinger Bridge matching;:

» Alternating projections on Markov measures and reciprocal class.
» two networks: xp (backward), x, (forward).

m DSBM iteration 2: training of the forward
» Sample from Y, ~ 71, dY; = (x9(¢,Y:) — Y,)/(1 — t)dt + odB,.
» Keep (Yo, Y1).
» Sample Y; = (1 — )Y, + tY1 + 04/t(1 — t)Z, Z ~ N(0,1d).
» Loss ||xs(1 —t,Y:) — Yo%

L

O

Y # mo Yo~



Diffusion Schrodinger Bridge Matching

Public

m Diffusion Schréodinger Bridge matching;:

> Alternating projections on Markov measures and reciprocal class.
» two networks: xy (backward), x4 (forward).

m DSBM iteration 3: training of the backward
» Sample from X, ~ o, dX; = (x4 (2,X;) — X;)/(1 — t)dt + odB,.
> Keep (Xo, Xl)
» Sample X; = (1 — )Xo + tX1 + o+/t(1 — t)Z,Z ~ N(0,1d).
» Loss |[|x(1 — t,X;) — Xo||.

o

M o

XONTFO X17(‘7T1



Climate Science Experiment
m Dataset Bischoff and Deck (2023):
» Supersaturation and vorticity field.

» Low resolution (64 X 64 X 2) to high resolution (512 x 512 x 2).

m Goal: superresolution (downscaling)

- N =
)

' f\"‘ —
/\ W\

- -

m Unpaired problem

» for downscaling tasks, paired datasets of high and low
resolution climate simulations do not truly exist, due
to deterministic chaos and the feedback of small scale
motion to large scales;

Public
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Climate Science Experiment

Same setting as Bischoff and Deck (2023).
Super resolution task.

Quality measure (frequency histogram).
Similarity measure (¢, with upscaling).

L2 of high and low res

Supersaturation

Vorticity
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Data wavenumber

I Random
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Discussion

m Denoising Diffusion Models provide state-of-the-art performance

in numerous domains: image, audio, proteins etc.
m Dynamic transport alternatives are now also available.

m A lot of open problems at the interface of control, generative
modeling, transport and sampling.
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