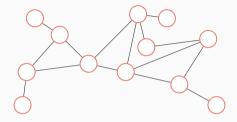
BETTER PRIVACY GUARANTEES FOR DECENTRALIZED FEDERATED LEARNING

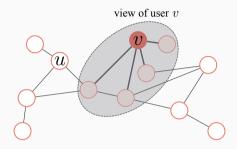
Aurélien Bellet (Inria Lille)

Joint work with Edwige Cyffers (Inria Lille), Mathieu Even and Laurent Massoulié (Inria Paris)

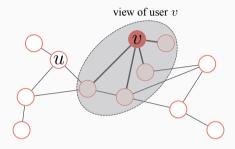
Workshop FL-Day - Decentralized Federated Learning: Approaches and Challenges January 10, 2023



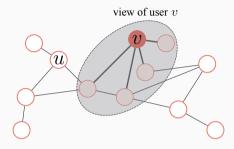
- In decentralized algorithms, such as decentralized SGD [Lian et al., 2017] [Koloskova et al., 2020], users communicate along the edges of a graph
- These algorithms are increasingly popular in machine learning due to their scalability



- In decentralized algorithms, such as decentralized SGD [Lian et al., 2017] [Koloskova et al., 2020], users communicate along the edges of a graph
- These algorithms are increasingly popular in machine learning due to their scalability
- Folklore belief: "Decentralized algorithms are good for privacy because users have a limited view of the system"



- In decentralized algorithms, such as decentralized SGD [Lian et al., 2017] [Koloskova et al., 2020], users communicate along the edges of a graph
- These algorithms are increasingly popular in machine learning due to their scalability
- Folklore belief: "Decentralized algorithms are good for privacy because users have a limited view of the system"
- · Question: is this claim really true? can we formalize and quantify these gains?



- In decentralized algorithms, such as decentralized SGD [Lian et al., 2017] [Koloskova et al., 2020], users communicate along the edges of a graph
- These algorithms are increasingly popular in machine learning due to their scalability
- Folklore belief: "Decentralized algorithms are good for privacy because users have a limited view of the system"
- Question: is this claim really true? can we formalize and quantify these gains? Yes!

OUTLINE

- 1. Background: Differential Privacy & DP-SGD
- 2. A relaxation of local DP for decentralized algorithms
- 3. Private random walk-based decentralized SGD
- 4. Private gossip-based decentralized SGD
- 5. Conclusion & Perspectives

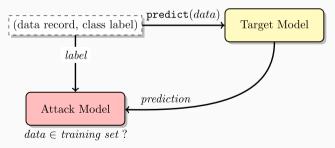
BACKGROUND: DIFFERENTIAL

PRIVACY & DP-SGD

ML models are susceptible to various attacks on data privacy

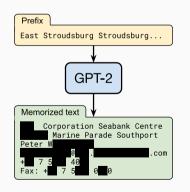
- ML models are susceptible to various attacks on data privacy
- Membership inference attack: infer whether a known individual data point was present in the training set

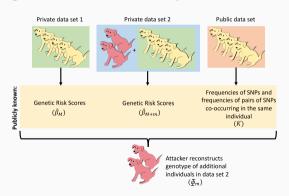
- ML models are susceptible to various attacks on data privacy
- Membership inference attack: infer whether a known individual data point was present in the training set
- For instance, one can exploit overconfidence in model predictions [Shokri et al., 2017] [Carlini et al., 2022]



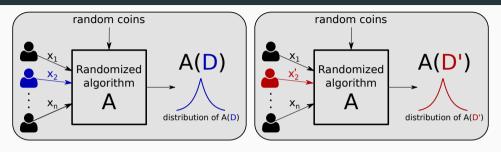
• Reconstruction attack: extract training data points from the model

- · Reconstruction attack: extract training data points from the model
- For instance, one can extract sensitive text from large language models [Carlini et al., 2021] or run differencing attacks on ML models [Paige et al., 2020]



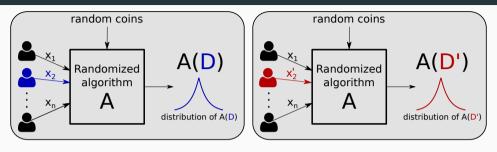


DIFFERENTIAL PRIVACY

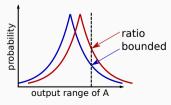


• Neighboring datasets $\mathcal{D} = \{x_1, x_2, \dots, x_n\}$ and $\mathcal{D}' = \{x_1, x_2', x_3, \dots, x_n\}$

DIFFERENTIAL PRIVACY



- Neighboring datasets $\mathcal{D} = \{x_1, x_2, \dots, x_n\}$ and $\mathcal{D}' = \{x_1, x_2', x_3, \dots, x_n\}$
- Requirement: $\mathcal{A}(\mathcal{D})$ and $\mathcal{A}(\mathcal{D}')$ should have "similar" distributions



RÉNYI DIFFERENTIAL PRIVACY

Definition (Rényi Differential Privacy [Mironov, 2017])

An algorithm \mathcal{A} satisfies (α, ϵ) -Rényi Differential Privacy (RDP) for $\alpha > 1$ and $\epsilon > 0$ if for all pairs of neighboring datasets $\mathcal{D} \sim \mathcal{D}'$:

$$D_{\alpha}\left(\mathcal{A}(\mathcal{D})||\mathcal{A}(\mathcal{D}')\right) \le \epsilon, \tag{1}$$

where for two r.v. X, Y with densities μ_X , μ_Y , $D_{\alpha}(X||Y)$ is the Rényi divergence of order α :

$$D_{\alpha}(X||Y) = \frac{1}{\alpha - 1} \ln \int \left(\frac{\mu_X(z)}{\mu_Y(z)}\right)^{\alpha} \mu_Y(z) dz.$$

6

RÉNYI DIFFERENTIAL PRIVACY

Definition (Rényi Differential Privacy [Mironov, 2017])

An algorithm \mathcal{A} satisfies (α, ϵ) -Rényi Differential Privacy (RDP) for $\alpha > 1$ and $\epsilon > 0$ if for all pairs of neighboring datasets $\mathcal{D} \sim \mathcal{D}'$:

$$D_{\alpha}\left(\mathcal{A}(\mathcal{D})||\mathcal{A}(\mathcal{D}')\right) \le \epsilon, \tag{1}$$

where for two r.v. X, Y with densities μ_X , μ_Y , $D_{\alpha}(X||Y)$ is the Rényi divergence of order α :

$$D_{\alpha}(X||Y) = \frac{1}{\alpha - 1} \ln \int \left(\frac{\mu_X(z)}{\mu_Y(z)}\right)^{\alpha} \mu_Y(z) dz$$
.

• Conversion to standard (ϵ, δ) -DP: (α, ϵ) -RDP implies $(\epsilon + \frac{\ln(1/\delta)}{\alpha - 1}, \delta)$ -DP for any $\delta \in (0, 1)$

- RDP is robust to auxiliary knowledge, as seen by its Bayesian interpretation:
 - · Consider an adversary who seeks to infer whether the dataset is ${\mathcal D}$ or ${\mathcal D}'$

- RDP is robust to auxiliary knowledge, as seen by its Bayesian interpretation:
 - Consider an adversary who seeks to infer whether the dataset is ${\mathcal D}$ or ${\mathcal D}'$
 - · The adversary has prior knowledge p and observes $X \sim \mathcal{A}(\mathcal{D})$

- RDP is robust to auxiliary knowledge, as seen by its Bayesian interpretation:
 - \cdot Consider an adversary who seeks to infer whether the dataset is ${\mathcal D}$ or ${\mathcal D}'$
 - · The adversary has prior knowledge p and observes $X \sim \mathcal{A}(\mathcal{D})$
 - Let the r.v. $R_{prior} = \frac{p(\mathcal{D}')}{p(\mathcal{D})}$ and $R_{post} = \frac{p(\mathcal{D}'|X)}{p(\mathcal{D}|X)} = \frac{p(X|\mathcal{D}')p(\mathcal{D}')}{p(X|\mathcal{D})p(\mathcal{D})}$ for $X \sim \mathcal{A}(\mathcal{D})$

- RDP is robust to auxiliary knowledge, as seen by its Bayesian interpretation:
 - \cdot Consider an adversary who seeks to infer whether the dataset is ${\mathcal D}$ or ${\mathcal D}'$
 - · The adversary has prior knowledge p and observes $X \sim \mathcal{A}(\mathcal{D})$
 - Let the r.v. $R_{prior} = \frac{p(\mathcal{D}')}{p(\mathcal{D})}$ and $R_{post} = \frac{p(\mathcal{D}'|X)}{p(\mathcal{D}|X)} = \frac{p(X|\mathcal{D}')p(\mathcal{D}')}{p(X|\mathcal{D})p(\mathcal{D})}$ for $X \sim \mathcal{A}(\mathcal{D})$
 - RDP bounds the α -th moment of $\frac{R_{\rm post}}{R_{\rm prior}}$ (for $\alpha \to \infty$, we recover "pure" ϵ -DP)

- RDP is robust to auxiliary knowledge, as seen by its Bayesian interpretation:
 - \cdot Consider an adversary who seeks to infer whether the dataset is ${\mathcal D}$ or ${\mathcal D}'$
 - The adversary has prior knowledge p and observes $X \sim \mathcal{A}(\mathcal{D})$
 - Let the r.v. $R_{prior} = \frac{p(\mathcal{D}')}{p(\mathcal{D})}$ and $R_{post} = \frac{p(\mathcal{D}'|X)}{p(\mathcal{D}|X)} = \frac{p(X|\mathcal{D}')p(\mathcal{D}')}{p(X|\mathcal{D})p(\mathcal{D})}$ for $X \sim \mathcal{A}(\mathcal{D})$
 - RDP bounds the α -th moment of $\frac{R_{post}}{R_{prior}}$ (for $\alpha \to \infty$, we recover "pure" ϵ -DP)
 - "The adversary does not know much more after observing the output of the algorithm"

- RDP is robust to auxiliary knowledge, as seen by its Bayesian interpretation:
 - \cdot Consider an adversary who seeks to infer whether the dataset is ${\mathcal D}$ or ${\mathcal D}'$
 - · The adversary has prior knowledge p and observes $X \sim \mathcal{A}(\mathcal{D})$
 - Let the r.v. $R_{prior} = \frac{p(\mathcal{D}')}{p(\mathcal{D})}$ and $R_{post} = \frac{p(\mathcal{D}'|X)}{p(\mathcal{D}|X)} = \frac{p(X|\mathcal{D}')p(\mathcal{D}')}{p(X|\mathcal{D})p(\mathcal{D})}$ for $X \sim \mathcal{A}(\mathcal{D})$
 - RDP bounds the α -th moment of $\frac{R_{\text{post}}}{R_{\text{post}}}$ (for $\alpha \to \infty$, we recover "pure" ϵ -DP)
 - "The adversary does not know much more after observing the output of the algorithm"
- Immunity to post-processing: for any g, if $A(\cdot)$ is (α, ϵ) -RDP, then so is $g(A(\cdot))$

- RDP is robust to auxiliary knowledge, as seen by its Bayesian interpretation:
 - · Consider an adversary who seeks to infer whether the dataset is $\mathcal D$ or $\mathcal D'$
 - · The adversary has prior knowledge p and observes $X \sim \mathcal{A}(\mathcal{D})$
 - Let the r.v. $R_{prior} = \frac{p(\mathcal{D}')}{p(\mathcal{D})}$ and $R_{post} = \frac{p(\mathcal{D}'|X)}{p(\mathcal{D}|X)} = \frac{p(X|\mathcal{D}')p(\mathcal{D}')}{p(X|\mathcal{D})p(\mathcal{D})}$ for $X \sim \mathcal{A}(\mathcal{D})$
 - RDP bounds the α -th moment of $\frac{R_{\text{post}}}{R_{\text{add}}}$ (for $\alpha \to \infty$, we recover "pure" ϵ -DP)
 - "The adversary does not know much more after observing the output of the algorithm"
- Immunity to post-processing: for any g, if $A(\cdot)$ is (α, ϵ) -RDP, then so is $g(A(\cdot))$
- Composition: if \mathcal{A}_1 is (α, ϵ_1) -RDP and \mathcal{A}_2 is (α, ϵ_2) -RDP, then $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$ is $(\alpha, \epsilon_1 + \epsilon_2)$ -RDP \rightarrow simpler and tighter than composition for (ϵ, δ) -DP

• Consider f taking as input a dataset and returning a p-dimensional real vector

- Consider f taking as input a dataset and returning a p-dimensional real vector
- Denote its sensitivity by $\Delta = \max_{\mathcal{D} \sim \mathcal{D}'} \|f(\mathcal{D}) f(\mathcal{D}')\|_2$

- · Consider f taking as input a dataset and returning a p-dimensional real vector
- · Denote its sensitivity by $\Delta = \max_{\mathcal{D} \sim \mathcal{D}'} \|f(\mathcal{D}) f(\mathcal{D}')\|_2$

Theorem (Gaussian mechanism)

Let $\sigma > 0$. The algorithm $\mathcal{A}(\cdot) = f(\cdot) + \mathcal{N}(0, \sigma^2 \Delta^2)$ satisfies $(\alpha, \frac{\alpha}{2\sigma^2})$ -RDP for any $\alpha > 1$.

• DP induces a privacy-utility trade-off, here in terms of the variance of the estimate

- · Consider f taking as input a dataset and returning a p-dimensional real vector
- · Denote its sensitivity by $\Delta = \max_{\mathcal{D} \sim \mathcal{D}'} \|f(\mathcal{D}) f(\mathcal{D}')\|_2$

Theorem (Gaussian mechanism)

Let $\sigma > 0$. The algorithm $\mathcal{A}(\cdot) = f(\cdot) + \mathcal{N}(0, \sigma^2 \Delta^2)$ satisfies $(\alpha, \frac{\alpha}{2\sigma^2})$ -RDP for any $\alpha > 1$.

Theorem (Subsampled Gaussian mechanism, informal)

If \mathcal{A} is executed on a random fraction q of \mathcal{D} , then it satisfies $(\alpha, \frac{q^2\alpha}{2\sigma^2})$ -RDP.

- DP induces a privacy-utility trade-off, here in terms of the variance of the estimate
- · Random subsampling amplifies privacy guarantees

PRIVATELY RELEASING A MACHINE LEARNING MODEL

- A trusted curator wants to privately release a model trained on data $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$
- We focus here on approximately solving an Empirical Risk Minimization (ERM) problem under a DP constraint:

$$\min_{\theta \in \mathbb{R}^p} \Big\{ F(\theta; \mathcal{D}) := \frac{1}{n} \sum_{i=1}^n \ell(\theta; x_i, y_i) \Big\}, \quad \text{where loss } \ell \text{ is differentiable in } \theta$$

• Note: in some cases, DP implies generalization [Bassily et al., 2016, Jung et al., 2021]

Algorithm Differentially Private SGD (DP-SGD) [Bassily et al., 2014, Abadi et al., 2016]

```
Initialize \theta^{(0)} \in \mathbb{R}^p (must be independent of \mathcal{D})

for t = 0, \dots, T-1 do

Pick i_t \in \{1, \dots, n\} uniformly at random

\eta^{(t)} \leftarrow (\eta_1^{(t)}, \dots, \eta_p^{(t)}) \in \mathbb{R}^p where each \eta_j^{(t)} \sim \mathcal{N}(0, \sigma^2 \Delta^2)

\theta^{(t+1)} \leftarrow \theta^{(t)} - \gamma^{(t)} (\nabla \ell(\theta^{(t)}; x_{i_t}, y_{i_t}) + \eta^{(t)})

Return \theta^{(T)}
```

• The sensitivity $\Delta = \sup_{\theta} \sup_{x,y,x',y'} \|\nabla \ell(\theta^{(t)};x,y) - \nabla \ell(\theta^{(t)};x',y')\|$ can be controlled by assuming $\ell(\cdot;x,y)$ Lipschitz for all x,y, or using gradient clipping [Abadi et al., 2016]

• Utility analysis: same as non-private SGD (with additional noise due to privacy)

- · Utility analysis: same as non-private SGD (with additional noise due to privacy)
- Privacy analysis: DP-SGD is $(\alpha, \frac{\alpha T}{2n^2\sigma^2})$ by subsampled Gaussian mechanism + composition over T iterations

- · Utility analysis: same as non-private SGD (with additional noise due to privacy)
- Privacy analysis: DP-SGD is $(\alpha, \frac{\alpha T}{2n^2\sigma^2})$ by subsampled Gaussian mechanism + composition over T iterations
- Setting σ^2 to satisfy (ϵ, δ) -DP and choosing T to balance optimization and privacy errors, we get the following suboptimality gap:

Convex, Lipschitz, smooth loss	$\tilde{O}\left(\frac{\sqrt{p}\ln(1/\delta)}{n\epsilon}\right)$
Convex, Lipschitz, smooth loss, strongly convex F	$\tilde{O}\left(\frac{p\ln(1/\delta)}{n^2\epsilon^2}\right)$

- · Utility analysis: same as non-private SGD (with additional noise due to privacy)
- Privacy analysis: DP-SGD is $(\alpha, \frac{\alpha T}{2n^2\sigma^2})$ by subsampled Gaussian mechanism + composition over T iterations
- Setting σ^2 to satisfy (ϵ, δ) -DP and choosing T to balance optimization and privacy errors, we get the following suboptimality gap:

Convex, Lipschitz, smooth loss	$\tilde{O}\left(\frac{\sqrt{p}\ln(1/\delta)}{n\epsilon}\right)$
Convex, Lipschitz, smooth loss, strongly convex F	$\tilde{O}\left(\frac{p\ln(1/\delta)}{n^2\epsilon^2}\right)$

• This is optimal [Bassily et al., 2014]: cannot do better without additional assumptions

REMOVING THE TRUSTED CURATOR: LOCAL DP

• So far we considered the central DP model, which relies on a trusted curator to collect and process raw data \rightarrow the output $\mathcal{A}(\mathcal{D})$ is only the final result

REMOVING THE TRUSTED CURATOR: LOCAL DP

- So far we considered the central DP model, which relies on a trusted curator to collect and process raw data \rightarrow the output $\mathcal{A}(\mathcal{D})$ is only the final result
- Central DP is good for utility but is an unrealistic trust model in applications where many parties contribute sensitive data, as in federated learning

REMOVING THE TRUSTED CURATOR: LOCAL DP

- So far we considered the central DP model, which relies on a trusted curator to collect and process raw data \rightarrow the output $\mathcal{A}(\mathcal{D})$ is only the final result
- Central DP is good for utility but is an unrealistic trust model in applications where many parties contribute sensitive data, as in federated learning
- Instead we can consider for local DP, where each party must locally randomize its contributions \rightarrow the output of $\mathcal{A}(\mathcal{D})$ consists of all messages sent by all parties

REMOVING THE TRUSTED CURATOR: LOCAL DP

- So far we considered the central DP model, which relies on a trusted curator to collect and process raw data \rightarrow the output $\mathcal{A}(\mathcal{D})$ is only the final result
- Central DP is good for utility but is an unrealistic trust model in applications where many parties contribute sensitive data, as in federated learning
- Instead we can consider for local DP, where each party must locally randomize its contributions \rightarrow the output of $\mathcal{A}(\mathcal{D})$ consists of all messages sent by all parties
- Unfortunately local DP induces a large cost in utility: for averaging n private p-dimensional values in ball of radius Δ under (α, ϵ) -RDP, we have

$$\mathbb{E}[\|x^{\mathrm{out}} - \bar{x}\|^2] = \Theta\Big(\frac{\alpha p \Delta^2}{n\epsilon}\Big) \text{ for local DP} \,, \quad \text{and} \quad \mathbb{E}[\|x^{\mathrm{out}} - \bar{x}\|^2] = \Theta\Big(\frac{\alpha p \Delta^2}{n^2\epsilon}\Big) \text{ for central DP} \,.$$

REMOVING THE TRUSTED CURATOR: LOCAL DP

- So far we considered the central DP model, which relies on a trusted curator to collect and process raw data \rightarrow the output $\mathcal{A}(\mathcal{D})$ is only the final result
- Central DP is good for utility but is an unrealistic trust model in applications where many parties contribute sensitive data, as in federated learning
- Instead we can consider for local DP, where each party must locally randomize its contributions \rightarrow the output of $\mathcal{A}(\mathcal{D})$ consists of all messages sent by all parties
- Unfortunately local DP induces a large cost in utility: for averaging n private p-dimensional values in ball of radius Δ under (α, ϵ) -RDP, we have

$$\mathbb{E}[\|x^{\mathrm{out}} - \bar{x}\|^2] = \Theta\Big(\frac{\alpha p \Delta^2}{n\epsilon}\Big) \text{ for local DP} \,, \quad \text{and} \quad \mathbb{E}[\|x^{\mathrm{out}} - \bar{x}\|^2] = \Theta\Big(\frac{\alpha p \Delta^2}{n^2\epsilon}\Big) \text{ for central DP} \,.$$

→ study intermediate models allowing better utility without relying on trusted parties

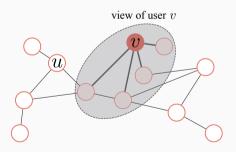
A RELAXATION OF LOCAL DP FOR

· A connected graph $G = (\mathcal{V}, \mathcal{E})$ on a set of $|\mathcal{V}| = n$ users (nodes)

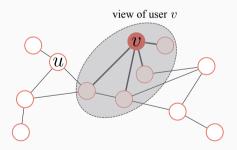
- · A connected graph $G = (\mathcal{V}, \mathcal{E})$ on a set of $|\mathcal{V}| = n$ users (nodes)
- Each user $v \in \mathcal{V}$ holds a local dataset \mathcal{D}_v

- · A connected graph $G = (\mathcal{V}, \mathcal{E})$ on a set of $|\mathcal{V}| = n$ users (nodes)
- Each user $v \in \mathcal{V}$ holds a local dataset \mathcal{D}_v
- A decentralized algorithm relies only on communication along the edges ${\mathcal E}$ of G

- A connected graph $G = (\mathcal{V}, \mathcal{E})$ on a set of $|\mathcal{V}| = n$ users (nodes)
- Each user $v \in \mathcal{V}$ holds a local dataset \mathcal{D}_v
- \cdot A decentralized algorithm relies only on communication along the edges ${\mathcal E}$ of G
- Each user v thus has a limited view: it only observes the messages that it receives



- A connected graph $G = (\mathcal{V}, \mathcal{E})$ on a set of $|\mathcal{V}| = n$ users (nodes)
- Each user $v \in \mathcal{V}$ holds a local dataset \mathcal{D}_v
- \cdot A decentralized algorithm relies only on communication along the edges ${\mathcal E}$ of G
- Each user v thus has a limited view: it only observes the messages that it receives



• We want to use this to prove stronger privacy guarantees than under local DP

NETWORK DIFFERENTIAL PRIVACY

- Let \mathcal{O}_{v} be the set of messages sent and received by party v

NETWORK DIFFERENTIAL PRIVACY

- \cdot Let \mathcal{O}_{v} be the set of messages sent and received by party v
- Denote by $\mathcal{D} \sim_u \mathcal{D}'$ two datasets $\mathcal{D} = (\mathcal{D}_1, \dots, \mathcal{D}_u, \dots, \mathcal{D}_n)$ and $\mathcal{D}' = (\mathcal{D}_1, \dots, \mathcal{D}_u', \dots, \mathcal{D}_n)$ that differ only in the local dataset of user u

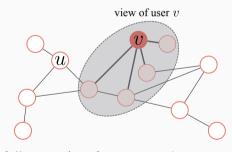
NETWORK DIFFERENTIAL PRIVACY

- · Let \mathcal{O}_{v} be the set of messages sent and received by party v
- Denote by $\mathcal{D} \sim_u \mathcal{D}'$ two datasets $\mathcal{D} = (\mathcal{D}_1, \dots, \mathcal{D}_u, \dots, \mathcal{D}_n)$ and $\mathcal{D}' = (\mathcal{D}_1, \dots, \mathcal{D}_u', \dots, \mathcal{D}_n)$ that differ only in the local dataset of user u

Definition (Network DP [Cyffers and Bellet, 2022])

An algorithm \mathcal{A} satisfies (α, ϵ) -Network DP (NDP) if for all pairs of distinct users $u, v \in \mathcal{V}$ and neighboring datasets $\mathcal{D} \sim_u \mathcal{D}'$:

$$D_{\alpha}(\mathcal{O}_{\nu}(\mathcal{A}(\mathcal{D})) || \mathcal{O}_{\nu}(\mathcal{A}(\mathcal{D}'))) \leq \epsilon.$$



• This is a relaxation of local DP: if \mathcal{O}_{v} contains the full transcript of messages, then network DP boils down to local DP

NETWORK PAIRWISE DIFFERENTIAL PRIVACY

• We will also consider privacy guarantees that are specific to each pair of nodes, rather than uniform over all pairs

Definition (Pairwise Network DP [Cyffers et al., 2022])

For $f: \mathcal{V} \times \mathcal{V} \to \mathbb{R}^+$, an algorithm \mathcal{A} satisfies (α, f) -Pairwise Network DP (PNDP) if for all pairs of distinct users $u, v \in \mathcal{V}$ and neighboring datasets $\mathcal{D} \sim_u \mathcal{D}'$:

$$D_{\alpha}(\mathcal{O}_{\nu}(\mathcal{A}(\mathcal{D})) || \mathcal{O}_{\nu}(\mathcal{A}(\mathcal{D}'))) \leq f(u, v).$$
 (2)

NETWORK PAIRWISE DIFFERENTIAL PRIVACY

 We will also consider privacy guarantees that are specific to each pair of nodes, rather than uniform over all pairs

Definition (Pairwise Network DP [Cyffers et al., 2022])

For $f: \mathcal{V} \times \mathcal{V} \to \mathbb{R}^+$, an algorithm \mathcal{A} satisfies (α, f) -Pairwise Network DP (PNDP) if for all pairs of distinct users $u, v \in \mathcal{V}$ and neighboring datasets $\mathcal{D} \sim_u \mathcal{D}'$:

$$D_{\alpha}(\mathcal{O}_{\nu}(\mathcal{A}(\mathcal{D})) || \mathcal{O}_{\nu}(\mathcal{A}(\mathcal{D}'))) \leq f(u, v).$$
 (2)

• For comparison with central and local DP baselines, we will report the mean privacy loss $\overline{\varepsilon}_{v} = \frac{1}{n} \sum_{u \in \mathcal{V} \setminus \{v\}} f(u, v)$ under the constraint $\overline{\varepsilon} = \max_{v \in \mathcal{V}} \overline{\varepsilon}_{v} \le \epsilon$

NETWORK PAIRWISE DIFFERENTIAL PRIVACY

• We will also consider privacy guarantees that are specific to each pair of nodes, rather than uniform over all pairs

Definition (Pairwise Network DP [Cyffers et al., 2022])

For $f: \mathcal{V} \times \mathcal{V} \to \mathbb{R}^+$, an algorithm \mathcal{A} satisfies (α, f) -Pairwise Network DP (PNDP) if for all pairs of distinct users $u, v \in \mathcal{V}$ and neighboring datasets $\mathcal{D} \sim_u \mathcal{D}'$:

$$D_{\alpha}(\mathcal{O}_{\nu}(\mathcal{A}(\mathcal{D})) || \mathcal{O}_{\nu}(\mathcal{A}(\mathcal{D}'))) \leq f(u, v).$$
 (2)

- For comparison with central and local DP baselines, we will report the mean privacy loss $\overline{\varepsilon}_V = \frac{1}{n} \sum_{u \in \mathcal{V} \setminus \{v\}} f(u, v)$ under the constraint $\overline{\varepsilon} = \max_{v \in \mathcal{V}} \overline{\varepsilon}_v \le \epsilon$
- Note: $\bar{\varepsilon}_{v}$ is not a proper privacy guarantee (we simply use it to summarize our gains)

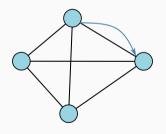
PRIVATE RANDOM WALK-BASED

DECENTRALIZED SGD

· Consider the standard objective $F(\theta; \mathcal{D}) = \frac{1}{n} \sum_{v=1}^{n} F_v(\theta; \mathcal{D}_v)$

- Consider the standard objective $F(\theta; \mathcal{D}) = \frac{1}{n} \sum_{v=1}^{n} F_v(\theta; \mathcal{D}_v)$
- We consider a decentralized SGD algorithm where the model is updated sequentially by following a random walk, aka incremental gradient [Johansson et al., 2009]

- · Consider the standard objective $F(\theta; \mathcal{D}) = \frac{1}{n} \sum_{v=1}^{n} F_v(\theta; \mathcal{D}_v)$
- We consider a decentralized SGD algorithm where the model is updated sequentially by following a random walk, aka incremental gradient [Johansson et al., 2009]
- · We focus here on the complete graph



Algorithm Private random walk-based SGD [Cyffers and Bellet, 2022]

```
Initialize \theta \in \mathbb{R}^p

for t = 1 to T do

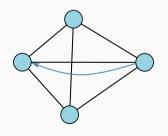
Draw random user v \sim \mathcal{U}(1, \dots, n)

\eta = [\eta_1, \dots, \eta_p], where each \eta_j \sim \mathcal{N}(0, \sigma^2 \Delta^2)

\theta \leftarrow \theta - \gamma [\nabla_\theta F_v(\theta; \mathcal{D}_v) + \eta]

return \theta
```

- · Consider the standard objective $F(\theta; \mathcal{D}) = \frac{1}{n} \sum_{v=1}^{n} F_v(\theta; \mathcal{D}_v)$
- We consider a decentralized SGD algorithm where the model is updated sequentially by following a random walk, aka incremental gradient [Johansson et al., 2009]
- · We focus here on the complete graph



Algorithm Private random walk-based SGD [Cyffers and Bellet, 2022]

```
Initialize \theta \in \mathbb{R}^p

for t=1 to T do

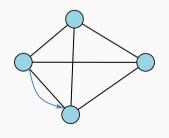
Draw random user v \sim \mathcal{U}(1,\ldots,n)

\eta = [\eta_1,\ldots,\eta_p], \text{ where each } \eta_j \sim \mathcal{N}(0,\sigma^2\Delta^2)

\theta \leftarrow \theta - \gamma[\nabla_\theta F_v(\theta;\mathcal{D}_v) + \eta]

return \theta
```

- · Consider the standard objective $F(\theta; \mathcal{D}) = \frac{1}{n} \sum_{v=1}^{n} F_v(\theta; \mathcal{D}_v)$
- We consider a decentralized SGD algorithm where the model is updated sequentially by following a random walk, aka incremental gradient [Johansson et al., 2009]
- · We focus here on the complete graph



Algorithm Private random walk-based SGD [Cyffers and Bellet, 2022]

```
Initialize \theta \in \mathbb{R}^p

for t = 1 to T do

Draw random user v \sim \mathcal{U}(1, \dots, n)

\eta = [\eta_1, \dots, \eta_p], where each \eta_j \sim \mathcal{N}(0, \sigma^2 \Delta^2)

\theta \leftarrow \theta - \gamma [\nabla_{\theta} F_v(\theta; \mathcal{D}_v) + \eta]

return \theta
```

Theorem ([Cyffers and Bellet, 2022], informal)

Theorem ([Cyffers and Bellet, 2022], informal)

Let $F_1(\cdot; \mathcal{D}_1), \ldots, F_n(\cdot; \mathcal{D}_n)$ be convex and smooth. Given $\alpha > 1$, $\epsilon > 0$, let $T = \tilde{\Omega}(n^2)$ and σ^2 be such that private random walk-based decentralized SGD on the complete graph satisfies (α, ϵ) -local RDP. Then the algorithm also satisfies $(\alpha, \frac{\ln^2 n}{n} \epsilon)$ -network DP.

• In other words, accounting for the limited view in decentralized algorithms allows to recover the privacy-utility trade-off of DP-SGD under central DP! (up to a log factor)

Theorem ([Cyffers and Bellet, 2022], informal)

- In other words, accounting for the limited view in decentralized algorithms allows to recover the privacy-utility trade-off of DP-SGD under central DP! (up to a log factor)
- Note: for $T = o(n^2)$, the amplification effect is still strong and can be computed numerically, see [Cyffers and Bellet, 2022]

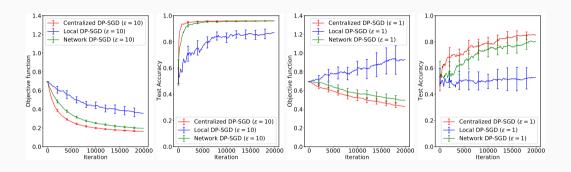
Theorem ([Cyffers and Bellet, 2022], informal)

- In other words, accounting for the limited view in decentralized algorithms allows to recover the privacy-utility trade-off of DP-SGD under central DP! (up to a log factor)
- Note: for $T = o(n^2)$, the amplification effect is still strong and can be computed numerically, see [Cyffers and Bellet, 2022]
- Utility analysis: same as DP-SGD!

Theorem ([Cyffers and Bellet, 2022], informal)

- In other words, accounting for the limited view in decentralized algorithms allows to recover the privacy-utility trade-off of DP-SGD under central DP! (up to a log factor)
- Note: for $T = o(n^2)$, the amplification effect is still strong and can be computed numerically, see [Cyffers and Bellet, 2022]
- Utility analysis: same as DP-SGD!
- Privacy analysis: leverages privacy amplification by iteration [Feldman et al., 2018] and exploits the randomness of the walk through "weak convexity" of Rényi divergence

EMPIRICAL ILLUSTRATION



 Numerical results are consistent with our theory: network DP-SGD significantly amplifies privacy guarantees compared to local DP-SGD

PRIVATE GOSSIP-BASED

DECENTRALIZED SGD

Random walk-based SGD is sequential (no parallel computation)

- · Random walk-based SGD is sequential (no parallel computation)
- A popular parallel alternative is gossip-based decentralized SGD [Lian et al., 2017] [Koloskova et al., 2020], which builds upon gossip averaging [Boyd et al., 2006]

- Random walk-based SGD is sequential (no parallel computation)
- A popular parallel alternative is gossip-based decentralized SGD [Lian et al., 2017] [Koloskova et al., 2020], which builds upon gossip averaging [Boyd et al., 2006]
- A gossip matrix over the graph $G = (\mathcal{V}, \mathcal{E})$ is a matrix $W \in \mathbb{R}^{n \times n}$ which:
 - · is symmetric with nonnegative entries
 - is stochastic, i.e., W1 = 1
 - for any $v,w\in\mathcal{V}$, $W_{v,w}>0$ implies $\{v,w\}\in\mathcal{E}$ or v=w

- · Random walk-based SGD is sequential (no parallel computation)
- A popular parallel alternative is gossip-based decentralized SGD [Lian et al., 2017]
 [Koloskova et al., 2020], which builds upon gossip averaging [Boyd et al., 2006]
- A gossip matrix over the graph $G = (\mathcal{V}, \mathcal{E})$ is a matrix $W \in \mathbb{R}^{n \times n}$ which:
 - · is symmetric with nonnegative entries
 - is stochastic, i.e., W1 = 1
 - for any $v, w \in \mathcal{V}$, $W_{v,w} > 0$ implies $\{v, w\} \in \mathcal{E}$ or v = w

Algorithm GOSSIP_AVERAGING($\{x_v\}_{v \in \mathcal{V}}, W, K$) [Boyd et al., 2006]

for all nodes v in parallel do

$$x_v^0 \leftarrow x_v$$

for
$$k = 0$$
 to $K - 1$ do

for all nodes v in parallel do

$$x_v^{k+1} \leftarrow \sum_{w \in \mathcal{N}_v} W_{v,w} x_w^k$$
, where $\mathcal{N}_v = \{w : W_{v,w} > 0\}$ return x_v^k, \dots, x_n^k

• Consider again
$$F(\theta; \mathcal{D}) = \frac{1}{n} \sum_{v=1}^{n} F_v(\theta; \mathcal{D}_v)$$
 with $F_v(\theta; \mathcal{D}_v) = \frac{1}{|\mathcal{D}_v|} \sum_{(x_v, y_v) \in \mathcal{D}_v} \ell(\theta; x_v, y_v)$

• Consider again $F(\theta; \mathcal{D}) = \frac{1}{n} \sum_{v=1}^{n} F_v(\theta; \mathcal{D}_v)$ with $F_v(\theta; \mathcal{D}_v) = \frac{1}{|\mathcal{D}_v|} \sum_{(x_v, y_v) \in \mathcal{D}_v} \ell(\theta; x_v, y_v)$

Algorithm Gossip-based decentralized SGD [Lian et al., 2017, Koloskova et al., 2020]

Initialize
$$\theta_1^{(0)}, \dots, \theta_n^{(0)} \in \mathbb{R}^p$$
 for $t = 0$ to $T - 1$ do for all nodes v in parallel do $\hat{\theta}_v^t \leftarrow \theta_v^t - \gamma \nabla_{\theta} \ell(\theta_v^t; x_v^t, y_v^t)$ where $(x_v^t, y_v^t) \sim \mathcal{D}_v$ $\theta_v^{t+1} \leftarrow \mathsf{GOSSIP_AVERAGING}\big(\{\hat{\theta}_v^t\}_{v \in \mathcal{V}}, W, K\big)$ return $\theta_1^T, \dots, \theta_n^T$

• Consider again $F(\theta; \mathcal{D}) = \frac{1}{n} \sum_{v=1}^{n} F_v(\theta; \mathcal{D}_v)$ with $F_v(\theta; \mathcal{D}_v) = \frac{1}{|\mathcal{D}_v|} \sum_{(x_v, y_v) \in \mathcal{D}_v} \ell(\theta; x_v, y_v)$

Algorithm Gossip-based decentralized SGD [Lian et al., 2017, Koloskova et al., 2020]

Initialize
$$\theta_1^{(0)}, \dots, \theta_n^{(0)} \in \mathbb{R}^p$$
 for $t = 0$ to $T - 1$ do for all nodes v in parallel do $\hat{\theta}_v^t \leftarrow \theta_v^t - \gamma \nabla_{\theta} \ell(\theta_v^t; x_v^t, y_v^t)$ where $(x_v^t, y_v^t) \sim \mathcal{D}_v$ $\theta_v^{t+1} \leftarrow \mathsf{GOSSIP_AVERAGING}(\{\hat{\theta}_v^t\}_{v \in \mathcal{V}}, W, K)$ return $\theta_1^T, \dots, \theta_n^T$

• Note: to improve the dependence on the topology in the convergence rate we actually use accelerated gossip [Berthier et al., 2020]

PRIVATE GOSSIP-BASED DECENTRALIZED SGD

• To make the algorithm private, we simply add Gaussian noise before gossiping

Algorithm PRIVATE_GOSSIP_AVERAGING $(\{x_v\}_{v \in \mathcal{V}}, W, K, \sigma^2)$

for all nodes v in parallel do $\tilde{x}_{v}^{0} \leftarrow x_{v} + \eta_{v}$ where $\eta_{v} \sim \mathcal{N}(0, \sigma^{2})$

 $x_1^K, \dots, x_n^K \leftarrow \mathsf{GOSSIP_AVERAGING}\big(\{\tilde{x}_v^0\}_{v \in \mathcal{V}}, W, K\big)$

return x_1^K, \ldots, x_n^K

PRIVATE GOSSIP-BASED DECENTRALIZED SGD

• To make the algorithm private, we simply add Gaussian noise before gossiping

Algorithm PRIVATE_GOSSIP_AVERAGING $(\{X_v\}_{v \in \mathcal{V}}, W, K, \sigma^2)$

for all nodes v in parallel do $\tilde{x}_{v}^{0} \leftarrow x_{v} + \eta_{v} \text{ where } \eta_{v} \sim \mathcal{N}(0, \sigma^{2})$

 $x_1^K, \dots, x_n^K \leftarrow \text{GOSSIP_AVERAGING}(\{\tilde{x}_v^0\}_{v \in \mathcal{V}}, W, K)$ **return** x_1^K, \dots, x_n^K

Algorithm Private gossip-based decentralized SGD [Cyffers et al., 2022]

Initialize
$$\theta_1^{(0)}, \dots, \theta_n^{(0)} \in \mathbb{R}^p$$
 for $t = 0$ to $T - 1$ do for all nodes v in parallel do $\hat{\theta}_v^t \leftarrow \theta_v^t - \gamma \nabla_{\theta} \ell(\theta_v^t; x_v^t, y_v^t)$ where $(x_v^t, y_v^t) \sim \mathcal{D}_v$ $\theta_v^{t+1} \leftarrow \text{PRIVATE_GOSSIP_AVERAGING}(\{\hat{\theta}_v^t\}_{v \in \mathcal{V}}, W, K, \gamma^2 \sigma^2 \Delta^2)$ return $\theta_1^T, \dots, \theta_n^T$

Theorem ([Cyffers et al., 2022])

After K iterations, Private Gossip Averaging is (α, f) -PNDP with

$$f(u, v) = \frac{\alpha \Delta^{2}}{2\sigma^{2}} \sum_{k=0}^{K-1} \sum_{w: \{v, w\} \in \mathcal{E}} \frac{(W^{k})_{u, w}^{2}}{\|(W^{k})_{w, :}\|^{2}}$$

$$\leq \frac{\alpha \Delta^{2} n}{2\sigma^{2}} \max_{\{v, w\} \in \mathcal{E}} W_{v, w}^{-2} \sum_{k=1}^{K} \mathbb{P}(X^{k} = v | X^{0} = u)^{2},$$

where $(X^k)_k$ is the random walk on graph G, with transitions W.

• As desired, this exhibits the fact that, for two nodes *u* and *v*, privacy guarantees improve with their "distance" in the graph

· Recall central DP achieves $O(\frac{\alpha p \Delta^2}{n^2 \epsilon})$ and local DP achieves $O(\frac{\alpha p \Delta^2}{n \epsilon})$

- Recall central DP achieves $O(\frac{\alpha p \Delta^2}{n^2 \epsilon})$ and local DP achieves $O(\frac{\alpha p \Delta^2}{n \epsilon})$
- Setting the mean privacy loss $\overline{\varepsilon}_{v} = \frac{1}{n} \sum_{u \in \mathcal{V} \setminus \{v\}} f(u, v)$ to satisfy $\overline{\varepsilon} = \max_{v \in \mathcal{V}} \overline{\varepsilon}_{v} \le \epsilon$, for private gossip averaging we get (ignoring log terms):

Graph	Arbitrary
Utility (MSE)	$\frac{\alpha p \Delta^2 d}{n^2 \epsilon \sqrt{\lambda_W}}$

• We match the utility of central DP up to an additional $d/\sqrt{\lambda_W}$ factor, where d is the max degree and λ_W of the spectral gap of W

- Recall central DP achieves $O(\frac{\alpha p \Delta^2}{n^2 \epsilon})$ and local DP achieves $O(\frac{\alpha p \Delta^2}{n \epsilon})$
- Setting the mean privacy loss $\overline{\varepsilon}_{v} = \frac{1}{n} \sum_{u \in \mathcal{V} \setminus \{v\}} f(u, v)$ to satisfy $\overline{\varepsilon} = \max_{v \in \mathcal{V}} \overline{\varepsilon}_{v} \le \epsilon$, for private gossip averaging we get (ignoring log terms):

Graph	Arbitrary	Complete
Utility (MSE)	$\frac{\alpha p \Delta^2 d}{n^2 \epsilon \sqrt{\lambda_W}}$	$\frac{\alpha p \Delta^2}{n\epsilon}$

• We match the utility of central DP up to an additional $d/\sqrt{\lambda_W}$ factor, where d is the max degree and λ_W of the spectral gap of W

- · Recall central DP achieves $O(\frac{\alpha p \Delta^2}{n^2 \epsilon})$ and local DP achieves $O(\frac{\alpha p \Delta^2}{n \epsilon})$
- Setting the mean privacy loss $\overline{\varepsilon}_{v} = \frac{1}{n} \sum_{u \in \mathcal{V} \setminus \{v\}} f(u, v)$ to satisfy $\overline{\varepsilon} = \max_{v \in \mathcal{V}} \overline{\varepsilon}_{v} \le \epsilon$, for private gossip averaging we get (ignoring log terms):

Graph	Arbitrary	Complete	Ring	
Utility (MSE)	$\frac{\alpha p \Delta^2 d}{n^2 \epsilon \sqrt{\lambda_W}}$	$\frac{\alpha p \Delta^2}{n\epsilon}$	$\frac{\alpha p \Delta^2}{n\epsilon}$	

• We match the utility of central DP up to an additional $d/\sqrt{\lambda_W}$ factor, where d is the max degree and λ_W of the spectral gap of W

- Recall central DP achieves $O(\frac{\alpha p \Delta^2}{n^2 \epsilon})$ and local DP achieves $O(\frac{\alpha p \Delta^2}{n \epsilon})$
- Setting the mean privacy loss $\overline{\varepsilon}_{v} = \frac{1}{n} \sum_{u \in \mathcal{V} \setminus \{v\}} f(u, v)$ to satisfy $\overline{\varepsilon} = \max_{v \in \mathcal{V}} \overline{\varepsilon}_{v} \le \epsilon$, for private gossip averaging we get (ignoring log terms):

Graph	Arbitrary	Complete	Ring	Expander
Utility (MSE)	$\frac{\alpha p \Delta^2 d}{n^2 \epsilon \sqrt{\lambda_W}}$	$\frac{\alpha p \Delta^2}{n\epsilon}$	$\frac{\alpha p \Delta^2}{n\epsilon}$	$\frac{\alpha p \Delta^2}{n^2 \epsilon}$

- We match the utility of central DP up to an additional $d/\sqrt{\lambda_W}$ factor, where d is the max degree and λ_W of the spectral gap of W
- · Some graphs (e.g., expanders) make this constant: we get privacy and efficiency!

- Recall central DP achieves $O(\frac{\alpha p \Delta^2}{n^2 \epsilon})$ and local DP achieves $O(\frac{\alpha p \Delta^2}{n \epsilon})$
- Setting the mean privacy loss $\overline{\varepsilon}_{v} = \frac{1}{n} \sum_{u \in \mathcal{V} \setminus \{v\}} f(u, v)$ to satisfy $\overline{\varepsilon} = \max_{v \in \mathcal{V}} \overline{\varepsilon}_{v} \le \epsilon$, for private gossip averaging we get (ignoring log terms):

Graph	Arbitrary	Complete	Ring	Expander
Utility (MSE)	$\frac{\alpha p \Delta^2 d}{n^2 \epsilon \sqrt{\lambda_W}}$	$\frac{\alpha p \Delta^2}{n\epsilon}$	$\frac{\alpha p \Delta^2}{n\epsilon}$	$\frac{\alpha p \Delta^2}{n^2 \epsilon}$

- We match the utility of central DP up to an additional $d/\sqrt{\lambda_W}$ factor, where d is the max degree and λ_W of the spectral gap of W
- · Some graphs (e.g., expanders) make this constant: we get privacy and efficiency!
- Note: we also have extensions to time-varying graphs and randomized gossip

BACK TO GOSSIP-BASED DECENTRALIZED SGD

Theorem ([Cyffers et al., 2022])

Let F be μ -strongly convex, F_v be L-smooth and $\mathbb{E}[\|\nabla \ell(\theta^*; x_v, y_v) - \nabla F(\theta^*)\|^2] \le \rho_v^2$. Let $\bar{\rho}^2 = \frac{1}{n} \sum_{v \in \mathcal{V}} \rho_v^2$. For any $\epsilon > 0$, and appropriate choices of T and K, there exists f such that the algorithm is (α, f) -PNDP, with:

$$\forall v \in \mathcal{V} \,, \quad \overline{\varepsilon}_v = \frac{1}{n} \sum_{u \in \mathcal{V} \setminus \{v\}} f(u, v) \leq \epsilon \quad \text{ and } \quad \mathbb{E}[F(\overline{\theta}^{1:T}) - F(\theta^\star)] \leq \tilde{\mathcal{O}}\left(\frac{\alpha p \Delta^2 d}{n^2 \mu \epsilon \sqrt{\lambda_W}} + \frac{\overline{\rho}^2}{nL}\right),$$

where d_v is the degree of node v and λ_W is the spectral gap associated with W.

• The term $\frac{\bar{\rho}^2}{nL}$ is privacy-independent and dominated by the first term

BACK TO GOSSIP-BASED DECENTRALIZED SGD

Theorem ([Cyffers et al., 2022])

Let F be μ -strongly convex, F_v be L-smooth and $\mathbb{E}[\|\nabla \ell(\theta^*; x_v, y_v) - \nabla F(\theta^*)\|^2] \le \rho_v^2$. Let $\bar{\rho}^2 = \frac{1}{n} \sum_{v \in \mathcal{V}} \rho_v^2$. For any $\epsilon > 0$, and appropriate choices of T and K, there exists f such that the algorithm is (α, f) -PNDP, with:

$$\forall v \in \mathcal{V} \,, \quad \overline{\varepsilon}_v = \frac{1}{n} \sum_{u \in \mathcal{V} \setminus \{v\}} f(u, v) \leq \epsilon \quad \text{ and } \quad \mathbb{E}[F(\overline{\theta}^{1:T}) - F(\theta^\star)] \leq \tilde{\mathcal{O}}\left(\frac{\alpha p \Delta^2 d}{n^2 \mu \epsilon \sqrt{\lambda_W}} + \frac{\overline{\rho}^2}{nL}\right),$$

where d_v is the degree of node v and λ_W is the spectral gap associated with W.

- The term $\frac{\bar{\rho}^2}{nL}$ is privacy-independent and dominated by the first term
- The first term has the same form as before, so same conclusions apply!

Theorem ([Cyffers et al., 2022])

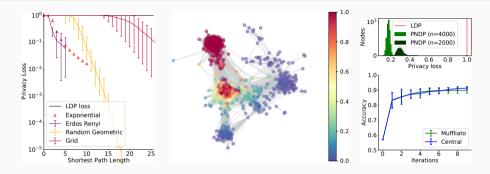
Let F be μ -strongly convex, F_v be L-smooth and $\mathbb{E}[\|\nabla \ell(\theta^*; x_v, y_v) - \nabla F(\theta^*)\|^2] \le \rho_v^2$. Let $\bar{\rho}^2 = \frac{1}{n} \sum_{v \in \mathcal{V}} \rho_v^2$. For any $\epsilon > 0$, and appropriate choices of T and K, there exists f such that the algorithm is (α, f) -PNDP, with:

$$\forall v \in \mathcal{V}, \quad \overline{\varepsilon}_v = \frac{1}{n} \sum_{u \in \mathcal{V} \setminus \{v\}} f(u, v) \leq \epsilon \quad \text{ and } \quad \mathbb{E}[F(\overline{\theta}^{1:T}) - F(\theta^{\star})] \leq \tilde{\mathcal{O}}\left(\frac{\alpha p \Delta^2 d}{n^2 \mu \epsilon \sqrt{\lambda_W}} + \frac{\overline{\rho}^2}{nL}\right),$$

where d_v is the degree of node v and λ_W is the spectral gap associated with W.

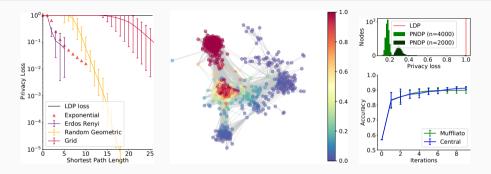
- The term $\frac{\bar{\rho}^2}{nL}$ is privacy-independent and dominated by the first term
- The first term has the same form as before, so same conclusions apply!
- In particular, with an expander graph, we match the privacy-utility trade-off of centralized SGD with a trusted curator (up to log terms)

EMPIRICAL ILLUSTRATION



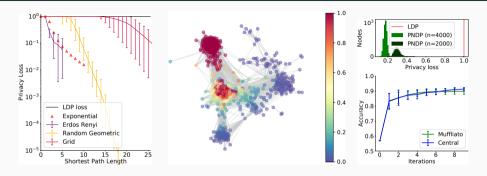
 Users get local DP guarantees w.r.t. their direct neighbors but stronger privacy w.r.t. to other users depending on their distance and the mixing properties of the graph

EMPIRICAL ILLUSTRATION



- Users get local DP guarantees w.r.t. their direct neighbors but stronger privacy w.r.t. to other users depending on their distance and the mixing properties of the graph
- This fits the privacy expectations of users in many use-cases (e.g., social networks)

EMPIRICAL ILLUSTRATION



- Users get local DP guarantees w.r.t. their direct neighbors but stronger privacy w.r.t. to other users depending on their distance and the mixing properties of the graph
- This fits the privacy expectations of users in many use-cases (e.g., social networks)
- For learning, we can randomize the graph after each local computation step to make the privacy loss concentrate!

Take-home message

• Decentralized learning can amplify differential privacy guarantees, providing a new incentive for using such approaches beyond the usual motivation of scalability

Take-home message

 Decentralized learning can amplify differential privacy guarantees, providing a new incentive for using such approaches beyond the usual motivation of scalability

Perspectives

 Privacy and utility guarantees for random walk-based decentralized SGD on arbitrary graphs [Johansson et al., 2009], possibly with multiple parallel walks [Hendrikx, 2022]

Take-home message

• Decentralized learning can amplify differential privacy guarantees, providing a new incentive for using such approaches beyond the usual motivation of scalability

Perspectives

- Privacy and utility guarantees for random walk-based decentralized SGD on arbitrary graphs [Johansson et al., 2009], possibly with multiple parallel walks [Hendrikx, 2022]
- Capturing the redundancy in gossip-based communication (i.e., correlated noise) to further improve privacy guarantees (recall that even constants matter in DP!)

THANK YOU FOR YOUR ATTENTION!
QUESTIONS?

REFERENCES I

[Abadi et al., 2016] Abadi, M., Chu, A., Goodfellow, I. J., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L. (2016).

Deep learning with differential privacy.

In CCS

[Bassily et al., 2016] Bassily, R., Nissim, K., Smith, A., Steinke, T., Stemmer, U., and Ullman, J. (2016). Algorithmic stability for adaptive data analysis.

[Bassily et al., 2014] Bassily, R., Smith, A. D., and Thakurta, A. (2014).

Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds.
In FOCS.

[Berthier et al., 2020] Berthier, R., Bach, F., and Gaillard, P. (2020).

Accelerated gossip in networks of given dimension using jacobi polynomial iterations.

SIAM Journal on Mathematics of Data Science, 2(1):24–47.

[Boyd et al., 2006] Boyd, S., Ghosh, A., Prabhakar, B., and Shah, D. (2006). Randomized gossip algorithms.

IEEE Transactions on Information Theory. 52(6):2508–2530.

[Carlini et al., 2022] Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A., and Tramer, F. (2022). Membership inference attacks from first principles. In S&P.

REFERENCES II

[Carlini et al., 2021] Carlini, N., Tramèr, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., Roberts, A., Brown, T., Song, D., Erlingsson, Ú., Oprea, A., and Raffel, C. (2021).

Extracting training data from large language models.

In USENIX Security.

[Cyffers and Bellet, 2022] Cyffers, E. and Bellet, A. (2022).

Privacy Amplification by Decentralization.

In AISTATS.

[Cyffers et al., 2022] Cyffers, E., Even, M., Bellet, A., and Massoulié, L. (2022).

Muffliato: Peer-to-Peer Privacy Amplification for Decentralized Optimization and Averaging.

In NeurIPS.

[Feldman et al., 2018] Feldman, V., Mironov, I., Talwar, K., and Thakurta, A. (2018).

Privacy Amplification by Iteration.

In FOCS.

[Hendrikx, 2022] Hendrikx, H. (2022).

A principled framework for the design and analysis of token algorithms.

Technical report, arXiv:2205.15015.

REFERENCES III

[Johansson et al., 2009] Johansson, B., Rabi, M., and Johansson, M. (2009).

A randomized incremental subgradient method for distributed optimization in networked systems.

SIAM Journal on Optimization, 20(3):1157-1170.

[Jung et al., 2021] Jung, C., Ligett, K., Neel, S., Roth, A., Sharifi-Malvajerdi, S., and Shenfeld, M. (2021).

A New Analysis of Differential Privacy's Generalization Guarantees (Invited Paper).

[Koloskova et al., 2020] Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., and Stich, S. U. (2020).

A Unified Theory of Decentralized SGD with Changing Topology and Local Updates.

In ICML.

[Lian et al., 2017] Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and Liu, J. (2017).

Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent.

In NIPS.

[Mironov, 2017] Mironov, I. (2017).

Rénvi Differential Privacy.

In CSF.

[Paige et al., 2020] Paige, B., Bell, J., Bellet, A., Gascón, A., and Ezer, D. (2020).

Reconstructing Genotypes in Private Genomic Databases from Genetic Risk Scores.

In International Conference on Research in Computational Molecular Biology RECOMB.

REFERENCES IV

[Shokri et al., 2017] Shokri, R., Stronati, M., Song, C., and Shmatikov, V. (2017). **Membership Inference Attacks Against Machine Learning Models.** In *IEEE Symposium on Security and Privacy* (S&P).