BETTER PRIVACY GUARANTEES FOR
DECENTRALIZED FEDERATED LEARNING

Aurélien Bellet (Inria Lille)

Joint work with Edwige Cyffers (Inria Lille), Mathieu Even and Laurent Massoulié (Inria Paris)

Workshop FL-Day - Decentralized Federated Learning: Approaches and Challenges
January 10, 2023



DECENTRALIZED ALGORITHMS: GOOD FOR PRIVACY?

- In decentralized algorithms, such as decentralized SGD [Lian et al., 2017]
[Koloskova et al., 2020], users communicate along the edges of a graph

- These algorithms are increasingly popular in machine learning due to their scalability



DECENTRALIZED ALGORITHMS: GOOD FOR PRIVACY?

view of user v

- In decentralized algorithms, such as decentralized SGD [Lian et al., 2017]
[Koloskova et al., 2020], users communicate along the edges of a graph

- These algorithms are increasingly popular in machine learning due to their scalability

- Folklore belief: “Decentralized algorithms are good for privacy because users have
a limited view of the system”



DECENTRALIZED ALGORITHMS: GOOD FOR PRIVACY?

view of user v

- In decentralized algorithms, such as decentralized SGD [Lian et al., 2017]
[Koloskova et al., 2020], users communicate along the edges of a graph

- These algorithms are increasingly popular in machine learning due to their scalability

- Folklore belief: “Decentralized algorithms are good for privacy because users have
a limited view of the system”

- Question: is this claim really true? can we formalize and quantify these gains? 1



DECENTRALIZED ALGORITHMS: GOOD FOR PRIVACY?

view of user v

- In decentralized algorithms, such as decentralized SGD [Lian et al., 2017]
[Koloskova et al., 2020], users communicate along the edges of a graph

- These algorithms are increasingly popular in machine learning due to their scalability

- Folklore belief: “Decentralized algorithms are good for privacy because users have
a limited view of the system”

- Question: is this claim really true? can we formalize and quantify these gains? Yes! 1



OUTLINE

1. Background: Differential Privacy & DP-SGD
2. A relaxation of local DP for decentralized algorithms

3. Private random walk-based decentralized SGD

4. Private gossip-based decentralized SGD

5. Conclusion & Perspectives



BACKGROUND: DIFFERENTIAL
Privacy & DP-SGD



PRIVACY ISSUES IN MACHINE LEARNING

- ML models are susceptible to various attacks on data privacy



PRIVACY ISSUES IN MACHINE LEARNING

- ML models are susceptible to various attacks on data privacy

- Membership inference attack: infer whether a known individual data point was
present in the training set



PRIVACY ISSUES IN MACHINE LEARNING

- ML models are susceptible to various attacks on data privacy

- Membership inference attack: infer whether a known individual data point was
present in the training set

- For instance, one can exploit overconfidence in model predictions [Shokri et al., 2017]

[Carlini et al,, 2022]
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PRIVACY ISSUES IN MACHINE LEARNING
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PRIVACY ISSUES IN MACHINE LEARNING

. extract training data points from the model

For instance, one can
[Carlini et al., 2021] or [Paige et al,, 2020]
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RENYI DIFFERENTIAL PRIVACY

Definition (Rényi Differential Privacy [Mironov, 2017])

An algorithm A satisfies («, €)-Rényi Differential Privacy (RDP) for o > 1and e > 0 if for
all pairs of neighboring datasets D ~ D"

Do (A(D)IIA(D)) < e, (1
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Definition (Rényi Differential Privacy [Mironov, 2017])

An algorithm A satisfies («, €)-Rényi Differential Privacy (RDP) for o > 1and e > 0 if for
all pairs of neighboring datasets D ~ D"

Do (A(D)IIA(D)) < e, (1

where for two rv. X, Y with densities px, piy, Do (X|] Y) is the of order «:

D (X]|Y) = ﬁln/(”(z))am(z)dz.

v (2)

: (e, €)-RDP implies (e + 2022 '5)-pP for any ¢ € (0,1)

-1
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PROPERTIES OF RDP

- RDP is robust to auxiliary knowledge, as seen by its Bayesian interpretation:

- Consider an adversary who seeks to infer whether the dataset is D or D’
- The adversary has prior knowledge p and observes X ~ A(D)
. __ p(D) _ p(D'1X) _ pXID)p(D’)
Let the rv. Rpior = ol and Rpost = 5D = PeID(D) for X ~ A(D)
- RDP bounds the a-th moment of 22 (for a — oo, we recover “pure” e-DP)

- “The adversary does not know much more after observing the output of the algorithm”

- Immunity to post-processing: for any g, if A(-) is (a, €)-RDP, then so is g(A(+))

- Composition: if Ay is (a, €1)-RDP and A; is (a, €;)-RDP, then A = (A4, A;) is
(e, €1+ €2)-RDP — simpler and tighter than composition for (e, )-DP
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ENFORCING RDP WITH THE GAUSSIAN MECHANISM

- Consider f taking as input a dataset and returning a p-dimensional real vector
- Denote its by A = maxpp [|f(D) — (D)2

Theorem (Gaussian mechanism)
Let o > 0. The algorithm A(-) = f(-) + N(0, 02 A?) satisfies (c, 32 )-RDP for any o > 1.

Theorem (Subsampled Gaussian mechanism, informal)

If A'is executed on a random fraction g of D, then it satisfies («, %)—RDP

- DPinduces a , here in terms of the variance of the estimate

- Random guarantees



PRIVATELY RELEASING A MACHINE LEARNING MODEL

- Atrusted curator wants to privately release a model trained on data D = {(x;, y;)}\_,

- We focus here on approximately solving an Empirical Risk Minimization (ERM)
problem under a DP constraint:

, 1 - o
min {F(G,D) = ;é(e,xi,y,»)}, where loss ¢ is differentiable in 0

- Note: in some cases, DP implies generalization [Bassily et al,, 2016, Jung et al,, 2021]



DIFFERENTIALLY PRIVATE SGD

Algorithm Differentially Private SGD (DP-SGD) [Bassily et al., 2014, Abadi et al., 2016]
Initialize (® € RP (must be independent of D)
fort=0,...,T—1do
Pickir € {1,...,n} umformly at random
n® — (", ") € RP where each n'" ~ N(0,02A2)
H(H) 9B — ~(0) (W(a(t S Xis Vi) + 1 ))
Return (7

* The sensitivity A = supy supy o, [|[VE(0®; x,y) — VE(OW; X, y")|| can be controlled by
assuming £(+; x,y) Lipschitz for all x, y, or using gradient clipping [Abadi et al,, 2016]
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PRIVACY-UTILITY TRADE-OFF OF DP-SGD

- Utility analysis: same as non-private SGD (with additional noise due to privacy)

- Privacy analysis: DP-SGD is (a, %) by subsampled Gaussian mechanism +
composition over T iterations

- Setting o2 to satisfy (e,d)-DP and choosing T to balance optimization and privacy
errors, we get the following suboptimality gap:

Convex, Lipschitz, smooth loss O(%)
Convex, Lipschitz, smooth loss, strongly convex F 5(%1{5))

- This is optimal [Bassily et al., 2014]: cannot do better without additional assumptions

1
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REMOVING THE TRUSTED CURATOR: LOCAL DP

- So far we considered the central DP model, which relies on a trusted curator to
collect and process raw data — the output A(D) is only the final result

- Central DP is good for utility but is an unrealistic trust model in applications where
many parties contribute sensitive data, as in federated learning

- Instead we can consider for local DP, where each party must locally randomize its
contributions — the output of A(D) consists of all messages sent by all parties

- Unfortunately local DP induces a large cost in utility: for averaging n private
p-dimensional values in ball of radius A under (a, €)-RDP, we have

apA?

nZe

2
E[||x°ut4||2]:e(%) for local P, and  E[|p**—X]] = ©(22=-) for central DP
€

— study intermediate models allowing better utility without relying on trusted parties
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DECENTRALIZED ALGORITHMS

- A connected graph G = (V, €) on a set of |[V| = n users (nodes)
- Each user v € V holds a local dataset D,
- A decentralized algorithm relies only on communication along the edges £ of G

- Each user v thus has a limited view: it only observes the messages that it receives

view of user v

- We want to use this to prove stronger privacy guarantees than under local DP
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NETWORK DIFFERENTIAL PRIVACY

- Let O, be the set of messages sent and received by party v

- Denote by D ~, D" two datasets D = (Ds, ..., Dy, ..., Dp) and
D' =(Dn,...,D,,...,Dy) that differ only in the local dataset of user u

view of user v

Definition (Network DP [Cyffers and Bellet, 2022])

An algorithm A satisfies («, €)-Network DP (NDP) if
for all pairs of distinct users u,v € ¥ and
neighboring datasets D ~, D"

Do (OL(A(D)) || O/(A(D'))) < €.

- This is a relaxation of local DP: if O, contains the full transcript of messages, then

network DP boils down to local DP
14
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NETWORK PAIRWISE DIFFERENTIAL PRIVACY

- We will also consider ,
rather than uniform over all pairs

Definition (Pairwise Network DP [Cyffers et al., 2022])

For , an algorithm A satisfies -Pairwise Network DP (PNDP) if for all
pairs of distinct users u,v € ¥V and neighboring datasets D ~, D"

Do (OU(AD)) [| OA(D) < f(1.). @

- For comparison with central and local DP baselines, we will report the
v = & 2uew\ vy f(U, V) under the constraint & = maxyey & < €

- Note: &, is not a proper privacy guarantee (we simply use it to summarize our gains)



PRIVATE RANDOM WALK-BASED
DECENTRALIZED SGD




PRIVATE RANDOM WALK-BASED DECENTRALIZED SGD

- Consider the standard objective F(6; D) = 1 >°0_, F.(6; D)



PRIVATE RANDOM WALK-BASED DECENTRALIZED SGD

- Consider the standard objective F(6; D) = 1 >°0_, F.(6; D)

- We consider a decentralized SGD algorithm where the model is updated sequentially
by following a random walk, aka incremental gradient [Johansson et al,, 2009]



PRIVATE RANDOM WALK-BASED DECENTRALIZED SGD

- Consider the standard objective F(6; D) = 1 >°0_, F.(6; D)

- We consider a decentralized SGD algorithm where the model is updated sequentially
by following a random walk, aka incremental gradient [Johansson et al,, 2009]

- We focus here on the complete graph

Algorithm Private random walk-based SGD [Cyffers and Bellet, 2022]
Initialize 6 € RP
fort=1toTdo
Draw random user v ~ U(1,...,n)
n=[m,...,np), where each nj ~ N(0,0%A?)
00— 'Y[V(JFV(Qi Dv) + 77]
return 6




PRIVATE RANDOM WALK-BASED DECENTRALIZED SGD

- Consider the standard objective F(6; D) = 1 >°0_, F.(6; D)

- We consider a decentralized SGD algorithm where the model is updated sequentially
by following a random walk, aka incremental gradient [Johansson et al,, 2009]

- We focus here on the complete graph

Algorithm Private random walk-based SGD [Cyffers and Bellet, 2022]
Initialize 6 € RP
fort=1toTdo
Draw random user v ~ U(1,...,n)
n=[m,...,np), where each nj ~ N(0,0%A?)
00— 'Y[V(JFV(Qi Dv) + 77]
return 6




PRIVATE RANDOM WALK-BASED DECENTRALIZED SGD

- Consider the standard objective F(6; D) = 1 >°0_, F.(6; D)

- We consider a decentralized SGD algorithm where the model is updated sequentially
by following a random walk, aka incremental gradient [Johansson et al,, 2009]

- We focus here on the complete graph

Algorithm Private random walk-based SGD [Cyffers and Bellet, 2022]
Initialize 6 € RP
fort=1toTdo
Draw random user v ~ U(1,...,n)
n=[m,...,np), where each nj ~ N(0,0%A?)
00— 'Y[V(JFV(Qi Dv) + 77]
return 6




PRIVACY AMPLIFICATION FOR WALK-BASED SGD

Theorem ([Cyffers and Bellet, 2022], informal)
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PRIVACY AMPLIFICATION FOR WALK-BASED SGD

Theorem ([Cyffers and Bellet, 2022], informal)

Let Fy(+;D1), ..., Fa(; D) be convex and smooth. Given a > 1, ¢ > 0, let T = Q(n?) and o2
be such that private random walk-based decentralized SGD on the complete graph

satisfies (a, €)-local RDP. Then the algorithm also satisfies («, '”;”e)—networl? DP

- In other words, accounting for the limited view in decentralized algorithms allows to
recover the privacy-utility trade-off of DP-SGD under central DP! (up to a log factor)

- Note: for T = o(n?), the amplification effect is still strong and can be computed
numerically, see [Cyffers and Bellet, 2022]

- Utility analysis: same as DP-SGD!

- Privacy analysis: leverages privacy amplification by iteration [Feldman et al,, 2018] and
exploits the randomness of the walk through “weak convexity” of Rényi divergence
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- Numerical results are consistent with our theory: network DP-SGD significantly
amplifies privacy guarantees compared to local DP-SGD
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- Random walk-based SGD is sequential (no parallel computation)

- A popular parallel alternative is gossip-based decentralized SGD [Lian et al., 2017]
[Koloskova et al., 2020], which builds upon gossip averaging [Boyd et al., 2006]

- A gossip matrix over the graph G = (V,€) is a matrix W € R™" which:
- is symmetric with nonnegative entries
- is stochastic, i.e, WL =1
- forany v,w €V, Wy,w > 0 implies {v,w} € Eorv=w

Algorithm GOSSIP_AVERAGING ({X, }vev, W, K) [Boyd et al, 2006]

for all nodes v in parallel do
X9 < x,
fork=0to K—1do
for all nodes v in parallel do
X = 3 en, Wowxly,  where Ny = {w: Wy, > 0}

return x§, ... xK
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GOSSIP-BASED DECENTRALIZED SGD

- Consider again F(6; D) = 1§ >_u_; Fu(8; Dv) With Fu(6; Dv) = 1577 2, e, £063 Xvs V)

[Dy|
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GOSSIP-BASED DECENTRALIZED SGD

- Consider again F(¢; D) = = >°0_, F,(6; D)) with F,(6; D,) = \917 > (o ye)eDy £(0: Xus )

Algorithm Gossip-based decentralized SGD [Lian et al., 2017, Koloskova et al., 2020]
Initialize 91(0), o 920) € RP
fort=0toT—1do
for all nodes v in parallel do
0, « 05 — yVal(0L; XL, v4) where (x5, yt) ~ D,
Ot GOSS|P_AVERAGlNG({é@}VGV, W, K)
return 6],.... 0]
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GOSSIP-BASED DECENTRALIZED SGD

- Consider again F(¢; D) = = >°0_, F,(6; D)) with F,(6; D,) = \917 > (o ye)eDy £(0: Xus )

Algorithm Gossip-based decentralized SGD [Lian et al., 2017, Koloskova et al., 2020]
Initialize 91(0), o 920) € RP
fort=0toT—1do
for all nodes v in parallel do
0, « 05 — yVal(0L; XL, v4) where (x5, yt) ~ D,
Ot GOSS|P_AVERAGlNG({é@}VGV, W, K)
return 6],.... 0]

- Note: to improve the dependence on the topology in the convergence rate we
actually use accelerated gossip [Berthier et al., 2020]
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PRIVATE GOSSIP-BASED DECENTRALIZED SGD

- To make the algorithm private, we simply add Gaussian noise before gossiping

Algorithm PRIVATE_GOSSIP_AVERAGING ({X,}vev, W, K, 0?)
for all nodes v in parallel do
5(8 + Xy + 1, where 7, ~ N(0, (TZ)
X5, ... X < GOSSIP_AVERAGING ({0 }yev, W, K)
return xX ... x&
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PRIVATE GOSSIP-BASED DECENTRALIZED SGD

- To make the algorithm private, we simply add Gaussian noise before gossiping

Algorithm PRIVATE_GOSSIP_AVERAGING ({X,}vev, W, K, 0?)
for all nodes v in parallel do
5(8 + Xy + 1, where 7, ~ N(0, (TZ)
X5, ... X < GOSSIP_AVERAGING ({0 }yev, W, K)
return xX ... x&

Algorithm Private gossip-based decentralized SGD [Cyffers et al., 2022]
Initialize 91(0), o 920) € RP
fort=0toT—1do
for all nodes v in parallel do
0, « 05 — yVal(0L; XL, y4) where (x5, yt) ~ D,
95t! «+ PRIVATE_GOSSIP_AVERAGING ({85 }vey, W, K, 1202 A?)
return 67, ..., 0]
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PRIVACY OF PRIVATE GOSSIP AVERAGING

Theorem ([Cyffers et al., 2022])
After K iterations, Private Gossip Averaging is (e, f)-PNDP with

LSS

k=0 w:{v, W}€£

2

H2

ozAﬂ
W P(X* = vIX° = u)®
< 27 (R va ==

where (X*), is the random walk on graph G, with transitions W.

- As desired, this exhibits the fact that, for two nodes u and v,
in the graph
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PRIVACY-UTILITY TRADE-OFF OF PRIVATE GOSSIP AVERAGING

)

- Recall central DP achieves O(‘M’A ) and local DP achieves O(<2
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- Recall central DP achieves O(‘M’A ) and local DP achieves O(a"A )

- Setting the mean privacy loss g, = %Zuev\{v} f(u,v) to satisfy € = max,cy &, < ¢, for
private gossip averaging we get (ignoring log terms):

Graph Arbitrary

Utility (MSE) ~ 2e4%d

nZe/\

- We match the utility of central DP up to an additional d/+/Ay factor, where d is the
max degree and Ay of the spectral gap of W
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- We match the utility of central DP up to an additional d/+/Ay factor, where d is the
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PRIVACY-UTILITY TRADE-OFF OF PRIVATE GOSSIP AVERAGING

- Recall central DP achieves O(‘M’A ) and local DP achieves O(a"A )

- Setting the mean privacy loss g, = %Zuev\{v} f(u,v) to satisfy € = max,cy &, < ¢, for
private gossip averaging we get (ignoring log terms):

Graph Arbitrary  Complete Ring Expander
g apA?d apA? ap? ap’
Utility (MSE) nzf\ — - Bl b

- We match the utility of central DP up to an additional d/+/Ay factor, where d is the
max degree and Ay of the spectral gap of W

- Some graphs (e.g.,, expanders) make this constant: we get privacy and efficiency!
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PRIVACY-UTILITY TRADE-OFF OF PRIVATE GOSSIP AVERAGING

- Recall central DP achieves O(’M’A ) and local DP achieves O(a"A )

- Setting the mean privacy loss g, = %Zuev\{v} f(u,v) to satisfy € = max,cy &, < ¢, for
private gossip averaging we get (ignoring log terms):

Graph Arbitrary  Complete Ring Expander
3 apA?d apA’? ap? ap’
Utility (MSE) nzf\ — - Bl L2

- We match the utility of central DP up to an additional d/+/Aw factor, where d is the
max degree and Ay of the spectral gap of W

- Some graphs (e.g.,, expanders) make this constant: we get privacy and efficiency!

- Note: we also have extensions to time-varying graphs and randomized gossip
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BACK TO GOSSIP-BASED DECENTRALIZED SGD

Theorem ([Cyffers et al., 2022])

Let F be pu-strongly convex, F, be L-smooth and E[||V£(0*; Xy, yv) — VF(0*)|°] < p2. Let

P = % Y ey p2. For any e > 0, and appropriate choices of T and K, there exists f such

that the algorithm is (v, f)-PNDP, with:

_ - ~ [ apA’d PP
== ) < E[F(0") - F(")] <O | =—=+ =
YWwev, g p ueV\{V}f(u,v) <e and [F(O"") —F(0")] <O (rﬂue =tn)

where d, Is the degree of node v and \y is the spectral gap associated with W.

=2 . . o
- The term £; is privacy-independent and dominated by the first term
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- The term £; is privacy-independent and dominated by the first term

- The first term has the same form as before, so same conclusions apply!
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BACK TO GOSSIP-BASED DECENTRALIZED SGD

Theorem ([Cyffers et al., 2022])

Let F be pu-strongly convex, F, be L-smooth and E[||V£(0*; Xy, yv) — VF(0*)|°] < p2. Let

P = % Y ey p2. For any e > 0, and appropriate choices of T and K, there exists f such

that the algorithm is (v, f)-PNDP, with:

_ - ~ [ apA’d PP
== ) < E[F(0") - F(")] <O | =—=+ =
YWwev, g p ueV\{V}f(u,v) <e and [F(O"") —F(0")] <O (rﬂue =tn)

where d, Is the degree of node v and \y is the spectral gap associated with W.

- The term ﬁlz is privacy-independent and dominated by the first term
- The first term has the same form as before, so same conclusions apply!

- In particular, with an expander graph, we
(up to log terms)
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EMPIRICAL ILLUSTRATION
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- Users get local DP guarantees w.rt. their direct neighbors but stronger privacy w.rt.
to other users depending on their distance and the mixing properties of the graph
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EMPIRICAL ILLUSTRATION
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- Users get local DP guarantees w.rt. their direct neighbors but stronger privacy w.rt.
to other users depending on their distance and the mixing properties of the graph

- This fits the privacy expectations of users in many use-cases (e.g., social networks)

- For learning, we can randomize the graph after each local computation step to make
the privacy loss concentrate! .
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Take-home message

- Decentralized learning can amplify differential privacy guarantees, providing a new
incentive for using such approaches beyond the usual motivation of scalability
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CONCLUSION & PERSPECTIVES

Take-home message

- Decentralized learning can amplify differential privacy guarantees, providing a new
incentive for using such approaches beyond the usual motivation of scalability

Perspectives

- Privacy and utility guarantees for random walk-based decentralized SGD on arbitrary
graphs [Johansson et al,, 2009], possibly with multiple parallel walks [Hendrikx, 2022]

- Capturing the redundancy in gossip-based communication (i.e., correlated noise) to
further improve privacy guarantees (recall that even constants matter in DP!)
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THANK YOU FOR YOUR ATTENTION!
QUESTIONS?
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