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DECENTRALIZED ALGORITHMS: GOOD FOR PRIVACY?

• In decentralized algorithms, such as decentralized SGD [Lian et al., 2017]
[Koloskova et al., 2020], users communicate along the edges of a graph

• These algorithms are increasingly popular in machine learning due to their scalability

• Folklore belief: “Decentralized algorithms are good for privacy because users have
a limited view of the system”

• Question: is this claim really true? can we formalize and quantify these gains?

Yes!

1
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BACKGROUND: DIFFERENTIAL
PRIVACY & DP-SGD



PRIVACY ISSUES IN MACHINE LEARNING

• ML models are susceptible to various attacks on data privacy

• Membership inference attack: infer whether a known individual data point was
present in the training set

• For instance, one can exploit overconfidence in model predictions [Shokri et al., 2017]
[Carlini et al., 2022]
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PRIVACY ISSUES IN MACHINE LEARNING

• Reconstruction attack: extract training data points from the model

• For instance, one can extract sensitive text from large language models
[Carlini et al., 2021] or run differencing attacks on ML models [Paige et al., 2020]
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DIFFERENTIAL PRIVACY
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RÉNYI DIFFERENTIAL PRIVACY

Definition (Rényi Differential Privacy [Mironov, 2017])
An algorithm A satisfies (α, ϵ)-Rényi Differential Privacy (RDP) for α > 1 and ϵ > 0 if for
all pairs of neighboring datasets D ∼ D′:

Dα (A(D)||A(D′)) ≤ ϵ , (1)

where for two r.v. X, Y with densities µX, µY, Dα

(
X || Y

)
is the Rényi divergence of order α:

Dα

(
X || Y

)
=

1
α− 1 ln

∫ (µX(z)
µY(z)

)α

µY(z)dz .

• Conversion to standard (ϵ, δ)-DP: (α, ϵ)-RDP implies (ϵ+ ln(1/δ)
α−1 , δ)-DP for any δ ∈ (0, 1)
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PROPERTIES OF RDP

• RDP is robust to auxiliary knowledge, as seen by its Bayesian interpretation:
• Consider an adversary who seeks to infer whether the dataset is D or D′

• The adversary has prior knowledge p and observes X ∼ A(D)

• Let the r.v. Rprior =
p(D′)
p(D)

and Rpost =
p(D′|X)
p(D|X) = p(X|D′)p(D′)

p(X|D)p(D)
for X ∼ A(D)

• RDP bounds the α-th moment of Rpost
Rprior

(for α → ∞, we recover “pure” ϵ-DP)
• “The adversary does not know much more after observing the output of the algorithm”

• Immunity to post-processing: for any g, if A(·) is (α, ϵ)-RDP, then so is g(A(·))

• Composition: if A1 is (α, ϵ1)-RDP and A2 is (α, ϵ2)-RDP, then A = (A1,A2) is
(α, ϵ1 + ϵ2)-RDP→ simpler and tighter than composition for (ϵ, δ)-DP
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ENFORCING RDP WITH THE GAUSSIAN MECHANISM

• Consider f taking as input a dataset and returning a p-dimensional real vector

• Denote its sensitivity by ∆ = maxD∼D′ ∥f(D)− f(D′)∥2

Theorem (Gaussian mechanism)
Let σ > 0. The algorithm A(·) = f(·) +N (0, σ2∆2) satisfies (α, α

2σ2 )-RDP for any α > 1.

Theorem (Subsampled Gaussian mechanism, informal)

If A is executed on a random fraction q of D, then it satisfies (α, q
2α

2σ2 )-RDP.

• DP induces a privacy-utility trade-off, here in terms of the variance of the estimate

• Random subsampling amplifies privacy guarantees
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PRIVATELY RELEASING A MACHINE LEARNING MODEL

• A trusted curator wants to privately release a model trained on data D = {(xi, yi)}ni=1

• We focus here on approximately solving an Empirical Risk Minimization (ERM)
problem under a DP constraint:

min
θ∈Rp

{
F(θ;D) := 1

n

n∑
i=1

ℓ(θ; xi, yi)
}
, where loss ℓ is differentiable in θ

• Note: in some cases, DP implies generalization [Bassily et al., 2016, Jung et al., 2021]
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DIFFERENTIALLY PRIVATE SGD

Algorithm Differentially Private SGD (DP-SGD) [Bassily et al., 2014, Abadi et al., 2016]
Initialize θ(0) ∈ Rp (must be independent of D)
for t = 0, . . . , T− 1 do

Pick it ∈ {1, . . . ,n} uniformly at random
η(t) ← (η

(t)
1 , . . . , η

(t)
p ) ∈ Rp where each η

(t)
j ∼ N (0, σ2∆2)

θ(t+1) ← θ(t) − γ(t)(∇ℓ(θ(t); xit , yit) + η(t)
)

Return θ(T)

• The sensitivity ∆ = supθ supx,y,x′,y′ ∥∇ℓ(θ(t); x, y)−∇ℓ(θ(t); x′, y′)∥ can be controlled by
assuming ℓ(·; x, y) Lipschitz for all x, y, or using gradient clipping [Abadi et al., 2016]
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PRIVACY-UTILITY TRADE-OFF OF DP-SGD

• Utility analysis: same as non-private SGD (with additional noise due to privacy)

• Privacy analysis: DP-SGD is (α, αT
2n2σ2 ) by subsampled Gaussian mechanism +

composition over T iterations

• Setting σ2 to satisfy (ϵ, δ)-DP and choosing T to balance optimization and privacy
errors, we get the following suboptimality gap:

Convex, Lipschitz, smooth loss Õ
(√p ln(1/δ)

nϵ

)
Convex, Lipschitz, smooth loss, strongly convex F Õ

(
p ln(1/δ)

n2ϵ2

)
• This is optimal [Bassily et al., 2014]: cannot do better without additional assumptions
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(√p ln(1/δ)

nϵ

)
Convex, Lipschitz, smooth loss, strongly convex F Õ
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REMOVING THE TRUSTED CURATOR: LOCAL DP

• So far we considered the central DP model, which relies on a trusted curator to
collect and process raw data→ the output A(D) is only the final result

• Central DP is good for utility but is an unrealistic trust model in applications where
many parties contribute sensitive data, as in federated learning

• Instead we can consider for local DP, where each party must locally randomize its
contributions→ the output of A(D) consists of all messages sent by all parties

• Unfortunately local DP induces a large cost in utility: for averaging n private
p-dimensional values in ball of radius ∆ under (α, ϵ)-RDP, we have

E[∥xout−x̄∥2] = Θ
(αp∆2

nϵ

)
for local DP , and E[∥xout−x̄∥2] = Θ

(αp∆2

n2ϵ

)
for central DP

→ study intermediate models allowing better utility without relying on trusted parties
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A RELAXATION OF LOCAL DP FOR
DECENTRALIZED ALGORITHMS



DECENTRALIZED ALGORITHMS

• A connected graph G = (V, E) on a set of |V| = n users (nodes)

• Each user v ∈ V holds a local dataset Dv

• A decentralized algorithm relies only on communication along the edges E of G

• Each user v thus has a limited view: it only observes the messages that it receives

view of user

• We want to use this to prove stronger privacy guarantees than under local DP

13
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• Each user v thus has a limited view: it only observes the messages that it receives

view of user

• We want to use this to prove stronger privacy guarantees than under local DP
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NETWORK DIFFERENTIAL PRIVACY

• Let Ov be the set of messages sent and received by party v

• Denote by D ∼u D′ two datasets D = (D1, . . . ,Du, . . . ,Dn) and
D′ = (D1, . . . ,D′

u, . . . ,Dn) that differ only in the local dataset of user u

Definition (Network DP [Cyffers and Bellet, 2022])
An algorithm A satisfies (α, ϵ)-Network DP (NDP) if
for all pairs of distinct users u, v ∈ V and
neighboring datasets D ∼u D′:

Dα

(
Ov(A(D)) || Ov(A(D′))

)
≤ ϵ .

view of user

• This is a relaxation of local DP: if Ov contains the full transcript of messages, then
network DP boils down to local DP
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NETWORK PAIRWISE DIFFERENTIAL PRIVACY

• We will also consider privacy guarantees that are specific to each pair of nodes,
rather than uniform over all pairs

Definition (Pairwise Network DP [Cyffers et al., 2022])
For f : V × V → R+, an algorithm A satisfies (α, f)-Pairwise Network DP (PNDP) if for all
pairs of distinct users u, v ∈ V and neighboring datasets D ∼u D′:

Dα

(
Ov(A(D)) || Ov(A(D′))

)
≤ f(u, v) . (2)

• For comparison with central and local DP baselines, we will report the mean privacy
loss εv = 1

n
∑

u∈V\{v} f(u, v) under the constraint ε = maxv∈V εv ≤ ϵ

• Note: εv is not a proper privacy guarantee (we simply use it to summarize our gains)
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DECENTRALIZED SGD



PRIVATE RANDOM WALK-BASED DECENTRALIZED SGD

• Consider the standard objective F(θ;D) = 1
n
∑n

v=1 Fv(θ;Dv)

• We consider a decentralized SGD algorithm where the model is updated sequentially
by following a random walk, aka incremental gradient [Johansson et al., 2009]

• We focus here on the complete graph

Algorithm Private random walk-based SGD [Cyffers and Bellet, 2022]
Initialize θ ∈ Rp

for t = 1 to T do
Draw random user v ∼ U(1, . . . ,n)
η = [η1, . . . , ηp], where each ηj ∼ N (0, σ2∆2)

θ ← θ − γ[∇θFv(θ;Dv) + η]

return θ

16
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PRIVACY AMPLIFICATION FOR WALK-BASED SGD

Theorem ([Cyffers and Bellet, 2022], informal)
Let F1(·;D1), . . . , Fn(·;Dn) be convex and smooth. Given α > 1, ϵ > 0, let T = Ω̃(n2) and σ2

be such that private random walk-based decentralized SGD on the complete graph
satisfies (α, ϵ)-local RDP. Then the algorithm also satisfies (α, ln2 n

n ϵ)-network DP.

• In other words, accounting for the limited view in decentralized algorithms allows to
recover the privacy-utility trade-off of DP-SGD under central DP! (up to a log factor)

• Note: for T = o(n2), the amplification effect is still strong and can be computed
numerically, see [Cyffers and Bellet, 2022]

• Utility analysis: same as DP-SGD!

• Privacy analysis: leverages privacy amplification by iteration [Feldman et al., 2018] and
exploits the randomness of the walk through “weak convexity” of Rényi divergence

17
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EMPIRICAL ILLUSTRATION
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• Numerical results are consistent with our theory: network DP-SGD significantly
amplifies privacy guarantees compared to local DP-SGD
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GOSSIP-BASED DECENTRALIZED SGD

• Random walk-based SGD is sequential (no parallel computation)

• A popular parallel alternative is gossip-based decentralized SGD [Lian et al., 2017]
[Koloskova et al., 2020], which builds upon gossip averaging [Boyd et al., 2006]

• A gossip matrix over the graph G = (V, E) is a matrix W ∈ Rn×n which:
• is symmetric with nonnegative entries
• is stochastic, i.e., W1 = 1

• for any v,w ∈ V , Wv,w > 0 implies {v,w} ∈ E or v = w

Algorithm GOSSIP_AVERAGING
(
{xv}v∈V ,W, K

)
[Boyd et al., 2006]

for all nodes v in parallel do
x0v ← xv

for k = 0 to K− 1 do
for all nodes v in parallel do
xk+1
v ←

∑
w∈Nv

Wv,wxkw, where Nv = {w : Wv,w > 0}
return xK1 , . . . , xKn
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GOSSIP-BASED DECENTRALIZED SGD

• Consider again F(θ;D) = 1
n
∑n

v=1 Fv(θ;Dv) with Fv(θ;Dv) =
1

|DV|
∑

(xv,yv)∈Dv
ℓ(θ; xv, yv)

Algorithm Gossip-based decentralized SGD [Lian et al., 2017, Koloskova et al., 2020]

Initialize θ
(0)
1 , . . . , θ

(0)
n ∈ Rp

for t = 0 to T− 1 do
for all nodes v in parallel do
θ̂tv ← θtv − γ∇θℓ(θ

t
v; xtv, ytv) where (xtv, ytv) ∼ Dv

θt+1
v ← GOSSIP_AVERAGING

(
{θ̂tv}v∈V ,W, K

)
return θT1 , . . . , θ

T
n

• Note: to improve the dependence on the topology in the convergence rate we
actually use accelerated gossip [Berthier et al., 2020]
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PRIVATE GOSSIP-BASED DECENTRALIZED SGD

• To make the algorithm private, we simply add Gaussian noise before gossiping

Algorithm PRIVATE_GOSSIP_AVERAGING
(
{xv}v∈V ,W, K, σ2)

for all nodes v in parallel do
x̃0v ← xv + ηv where ηv ∼ N (0, σ2)

xK1 , . . . , xKn ← GOSSIP_AVERAGING
(
{x̃0v}v∈V ,W, K

)
return xK1 , . . . , xKn

Algorithm Private gossip-based decentralized SGD [Cyffers et al., 2022]

Initialize θ
(0)
1 , . . . , θ

(0)
n ∈ Rp

for t = 0 to T− 1 do
for all nodes v in parallel do
θ̂tv ← θtv − γ∇θℓ(θ

t
v; xtv, ytv) where (xtv, ytv) ∼ Dv

θt+1
v ← PRIVATE_GOSSIP_AVERAGING

(
{θ̂tv}v∈V ,W, K, γ2σ2∆2)

return θT1 , . . . , θ
T
n
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PRIVACY OF PRIVATE GOSSIP AVERAGING

Theorem ([Cyffers et al., 2022])
After K iterations, Private Gossip Averaging is (α, f)-PNDP with

f(u, v) = α∆2

2σ2

K−1∑
k=0

∑
w:{v,w}∈E

(Wk)2u,w
∥(Wk)w,:∥2

≤ α∆2n
2σ2 max

{v,w}∈E
W−2

v,w

K∑
k=1

P(Xk = v|X0 = u)2,

where (Xk)k is the random walk on graph G, with transitions W.

• As desired, this exhibits the fact that, for two nodes u and v, privacy guarantees
improve with their “distance” in the graph
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PRIVACY-UTILITY TRADE-OFF OF PRIVATE GOSSIP AVERAGING

• Recall central DP achieves O
(
αp∆2

n2ϵ

)
and local DP achieves O

(
αp∆2

nϵ
)

• Setting the mean privacy loss εv = 1
n
∑

u∈V\{v} f(u, v) to satisfy ε = maxv∈V εv ≤ ϵ, for
private gossip averaging we get (ignoring log terms):

Graph Arbitrary

Complete Ring Expander

Utility (MSE) αp∆2d
n2ϵ

√
λW

αp∆2

nϵ
αp∆2

nϵ
αp∆2

n2ϵ

• We match the utility of central DP up to an additional d/
√
λW factor, where d is the

max degree and λW of the spectral gap of W

• Some graphs (e.g., expanders) make this constant: we get privacy and efficiency!

• Note: we also have extensions to time-varying graphs and randomized gossip
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BACK TO GOSSIP-BASED DECENTRALIZED SGD

Theorem ([Cyffers et al., 2022])
Let F be µ-strongly convex, Fv be L-smooth and E[∥∇ℓ(θ⋆; xv, yv)−∇F(θ⋆)∥2] ≤ ρ2v. Let
ρ̄2 = 1

n
∑

v∈V ρ2v. For any ϵ > 0, and appropriate choices of T and K, there exists f such
that the algorithm is (α, f)-PNDP, with:

∀v ∈ V , εv =
1
n

∑
u∈V\{v}

f(u, v) ≤ ϵ and E[F(θ̄1:T)− F(θ⋆)] ≤ Õ
(

αp∆2d
n2µϵ
√
λW

+
ρ̄2

nL

)
,

where dv is the degree of node v and λW is the spectral gap associated with W.

• The term ρ̄2

nL is privacy-independent and dominated by the first term

• The first term has the same form as before, so same conclusions apply!

• In particular, with an expander graph, we match the privacy-utility trade-off of
centralized SGD with a trusted curator (up to log terms)
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EMPIRICAL ILLUSTRATION
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• Users get local DP guarantees w.r.t. their direct neighbors but stronger privacy w.r.t.
to other users depending on their distance and the mixing properties of the graph

• This fits the privacy expectations of users in many use-cases (e.g., social networks)

• For learning, we can randomize the graph after each local computation step to make
the privacy loss concentrate!
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CONCLUSION & PERSPECTIVES

Take-home message

• Decentralized learning can amplify differential privacy guarantees, providing a new
incentive for using such approaches beyond the usual motivation of scalability

Perspectives

• Privacy and utility guarantees for random walk-based decentralized SGD on arbitrary
graphs [Johansson et al., 2009], possibly with multiple parallel walks [Hendrikx, 2022]

• Capturing the redundancy in gossip-based communication (i.e., correlated noise) to
further improve privacy guarantees (recall that even constants matter in DP!)
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THANK YOU FOR YOUR ATTENTION!
QUESTIONS?
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