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Few-Shot Learning
Apprendre avec peu de 

données 



Few-shot learning (FSL)
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Learn from a few examples per new class  

Few-shot tasks at testing time  

Classify 
these  

Training on base classes  
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• Humans recognize easily with few 
examples

• Modern ML generalize very poorly

Few-shot learning
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Cityscapes (5k images; 1.5h per image):
Urban scenes, less than 30 classes 

 New classes, but with few examples 

A dense prediction task: semantic segmentation  

Why it is interesting
Available data sets represent small sub-domains of 
the world 
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Full annotations Semi-supervision 

Figures from Lin et al. Scribblesup: Scribble-supervised convolutional networks for semantic segmentation, CVPR 2016  

Semi-supervision
A lot of non-annotated data,  
                                               and a fraction of points 
annotated
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Crowdsourcing?

Dense 3D annotations: several hours
(of radiologist time)
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Labels: not only expensive, but might 
need expert knowledge 



 

[MRI Prostate segmentation: Figure from Zhu et al., Boundary-weighted Domain Adaptive Neural Network for 
Prostate MR Image Segmentation ArXiv 2019]

Domain shifts make things worse 
Even with full annotations in one domain  
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No labels for the target
We have labels for 
the source domain

[Images from Dou et al., PnP-AdaNet: Plug-and-play adversarial domain adaptation network with a 
benchmark at cross-modality cardiac segmentation ArXiv 2018]
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Unsupervised domain adaptation  
 



[Images from Dou et al., PnP-AdaNet: Plug-and-play adversarial domain adaptation network with a 
benchmark at cross-modality cardiac segmentation ArXiv 2018]
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Bad generalization to the target
 



Cityscapes (5000 images): labeling of 1 image takes 90 min at average [Cordt et al., CVPR 2016] 

Zurich

Frankfurt

Wide interest in computer vision as well 
 Domain shifts are everywhere BUT we cannot label 
everywhere 
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 Domain 
shifts     

 
unlabelled     

 labelled     

 SSL      UDA     

FSL, SSL and UDA are closely related 
problems
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Few-Shot/SSL/UDA in a nutshell:
We are leveraging unlabelled data with 

priors  

 
-- Structure-driven priors: Regularization

-- Knowledge-driven priors (e.g., anatomical constraints)

-- Invariance priors (e.g., contrastive learning)

-- Multi-modal priors (e.g., text info associated with the images)
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Only labeled points    
Unlabeled 

points    

Labeled points     Unlabeled points     

Learning from labeled and unlabeled data   
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Regularized losses for segmentation 
[Tang et al., ECCV 2018]    
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Partial CE only + regularized loss Ground truth

97.6% of full supervision performance with 3% of the labels! 

Regularized losses for segmentation 
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[Tang et al., ECCV 2018]    



Basic training
(no meta-learning)

Laplacian regularization
(unlabeled points) 

Supervision term with a few 
labeled samples

Laplacian regularized few-shot image 
classification   [Ziko et al., ICML 2020]    
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The results question and abundant 
meta-learning literature   

Several recent baselines: [Chen et al., ICLR’19]; [Tian et al., ECCV’20] 
[Dhillon et al., ICLR’20]; [Ziko et al., ICML’20]; [Boudiaf et al., NeurIPS’20]  

17



More realistic benchmark: Further 
surprises  

More realistic few-shot tasks 
(Dirichlet-sampled)    
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[Veilleux et al., NeurIPS 2021]    

Dirichlet parameter    



Anatomical priors (e.g., shapes)
Partially labeled data

(e.g., exploiting organ relationships)

A lot of priors in medical 
imaging

Constrained optimization (in deep 
networks)  Data meet domain knowledge    
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Full 
annotations

Semi-supervised

Full annotations

Partial annotations for cross-entropy

Example: Left ventricle segmentation in 
cardiac MRI with volumetric constraints  
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Size information
 
 

Example: Left ventricle segmentation in 
cardiac MRI with volumetric constraints  
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[Kervadek et al., MedIA 2019]    



Example: Left ventricle segmentation in 
cardiac MRI with volumetric constraints  

[Kervadek et al., MedIA 2019]    
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Example: Left ventricle segmentation in 
cardiac MRI with volumetric constraints  

[Kervadek et al., MedIA 2019]    
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The exciting part: 90% of full supervision Dice with 0.1% of labels 
 

Example: Left ventricle segmentation in 
cardiac MRI with volumetric constraints  
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[Kervadek et al., MedIA 2019]    



The surprising part: Lagrangian optimization is much worse than a simple penalty 
 

[Kervadek et al., MedIA 2019]    

Example: Left ventricle segmentation in 
cardiac MRI with volumetric constraints  
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Beyond size: Exploring shape priors as 
functions of network outputs  

[Kervadek et al., MIDL 2021 (Best-paper 
award)]    
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A few shape descriptors are surprisingly 
powerful in unsupervised domain 
adaptation   [Bateson et al., MedIA 2022 (under revision)]    

Ground truth  
 

No adapt  
 

Shape-constrained  
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Merci!  
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