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Few-shot learning (FSL)

Training on base classes
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Classify

Learn from a few examples per new class these




Few-shot learning

® Humans recognize easily with few
examples

®* Modern ML generalize very poorly




Why it is interesting
Available data sets represent small sub-domains of
the world

Cityscapes (5k images; 1.5h per image):

New classes, but with few examples
Urban scenes, less than 30 classes ’ P

Person
Rider
Car
Truck

Bus
Train
Motorcycle
Bicycle

A dense prediction task: semantic segmentation




Semi-supervision

A lot of non-annotated data,
and a fraction of points

annotated

Full annotations Semi-supervision

Figures from Lin et al. Scribblesup: Scribble-supervised convolutional networks for semantic segmentation, CVPR 2016



Labels: not only expensive, but might
need expert knowledge

Crowdsourcing?

Select all images with

esophagus

Click verify once there are none le

Dense 3D annotations: several hours
(of radiologist time)




Domain shifts make things worse

Even with full annotations in one domain
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[MRI Prostate segmentation: Figure from Zhu et al., Boundary-weighted Domain Adaptive Neural Network for
Prostate MR Image Segmentation ArXiv 2019]




Unsupervised domain adaptation

We have labels for
the source domain

No labels for the target

[Images from Dou et al., PnP-AdaNet: Plug-and-play adversarial domain adaptation network with a
benchmark at cross-modality cardiac segmentation ArXiv 2018]




Bad generalization to the target

e .

(a) CT image (b) CT abel (c) Se-CT (d) Seg-CT-noDA

[Images from Dou et al., PnP-AdaNet: Plug-and-play adversarial domain adaptation network with a
benchmark at cross-modality cardiac segmentation ArXiv 2018]



Wide interest in computer vision as well

Domain shifts are everywhere BUT we cannot label
everywhere

Frankfurt

rider car truck bus train motorcycle bicycle unlabeled Zuric h

Cityscapes (5000 images): labeling of 1 image takes 90 min at average [Cordt et al., CVPR 2016]




FSL, SSL and UDA are closely related
problems
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Few-Shot/SSL/UDA in a nutshell:
We are leveraging unlabelled data with
priors

-- Structure-driven priors: Regularization
-- Knowledge-driven priors (e.g., anatomical constraints)
-- Invariance priors (e.g., contrastive learning)

-- Muulti-modal priors (e.g., text info associated with the images)
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Learning from labeled and unlabeled data
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Regularized losses for segmentation
[Tang et al., ECCV 2018]
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Regularized losses for segmentation
[Tang et al., ECCV 2018]

97.6% of full supervision performance with 3% of the labels!

Partial CE only + regularized loss Ground truth
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Laplacian regularized few-shot image
classification [Ziko et al., ICML 2020]

-

Basic training
(no meta-learning)

Supervision term with a few Laplacian regularization
labeled samples (unlabeled points)




The results question and abundant
meta-learning literature

Methods Network 1-shot 5-shot
MAML [Finn et al., 2017] ResNet-18  49.61 + 0.92 65.72 £ 0.77
Chen [Chen et al., 2019] ResNet-18  51.87 £ 0.77  75.68 £ 0.63
RelationNet [Sung et al., 2018] ResNet-18  52.48 + 0.86  69.83 £ 0.68
MatchingNet [Vinyals et al., 2016] ResNet-18  52.91 + 0.88  68.88 £ 0.69
ProtoNet [Snell et al., 2017] ResNet-18  54.16 £ 0.82 73.68 £+ 0.65
Gidaris [Gidaris and Komodakis, 2018] ResNet-15  55.45 + 0.89  70.13 £ 0.68
SNAIL[Mishra et al., 2018] ResNet-15  55.71 £ 0.99  68.88 £ 0.92
AdaCNN [Munkhdalai et al., 2018] ResNet-15  56.88 £ 0.62 71.94 £+ 0.57
TADAM [Oreshkin et al., 2018] ResNet-15  58.50 &£ 0.30 76.70 £ 0.30
CAML [Jiang et al., 2019] ResNet-12  59.23 + 0.99 72.35 £ 0.71
TPN [Yanbin et al., 2019] ResNet-12 59.46 75.64
TEAM [Qiao et al., 2019] ResNet-18 60.07 75.90
MTL [Sun et al., 2019] ResNet-18  61.20 + 1.80 75.50 £ 0.80
VariationalFSL [Zhang et al., 2019] ResNet-18  61.23 + 0.26  77.69 £ 0.17
Transductive tuning [Dhillon et al., 2020] ResNet-12  62.35 4+ 0.66 74.53 £ 0.54
MetaoptNet[Lee et al., 2019] ResNet-18  62.64 £ 0.61 78.63 £ 0.46
SimpleShot [Wang et al., 2019] ResNet-18  63.10 = 0.20  79.92 £ 0.14
CAN+T [Hou et al., 2019] ResNet-12  67.19 = 0.55  80.64 £ 0.35
LaplacianShot (ours) ResNet-18  72.11 £ 0.19 82.31 £ 0.14

Several recent baselines: [Chen et al., ICLR’19]; [Tian et al., ECCV’20]
[Dhillon et al., ICLR’20]; [Ziko et al., ICML'20]; [Boudiaf et al., NeurlPS’20]



More realistic benchmark: Further
surprises [Veilleux et al., NeurlIPS 2021]
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More realistic few-shot tasks
(Dirichlet-sampled)



Constrained optimization (in deep
networks) Data meet domain knowledge

A lot of priors in medical
Imaging
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Partially labeled data

Anatomical priors (e.g., shapes) (e.g., exploiting organ relationships)




Example: Left ventricle segmentation in
cardiac MRI with volumetric constraints

Partial annotations for cross-entropy




Example: Left ventricle segmentation in

cardiac MRI with volumetric constraints
[Kervadek et al., MedIA 2019]
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Example: Left ventricle segmentation in

cardiac MRI with volumetric constraints
[Kervadek et al., MedIA 2019]

Ground truth Fully supervised Weak (CE) Lagragian




Example: Left ventricle segmentation in

cardiac MRI with volumetric constraints
[Kervadek et al., MedIA 2019]

Validation dice during training
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Example: Left ventricle segmentation in

cardiac MRI with volumetric constraints
[Kervadek et al., MedIA 2019]

The exciting part: 90% of full supervision Dice with 0.1% of labels
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Example: Left ventricle segmentation in

cardiac MRI with volumetric constraints
[Kervadek et al., MedIA 2019]

The surprising part: Lagrangian optimization is much worse than a simple penalty
Validation dice during training
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Beyond size: Exploring shape priors as

functions of network outputs

[Kervadek et al., MIDL 2021 (Best-paper
award)]

Ground truth Cross-entropy Ours
using pixel-wise labels using shape descriptors

(a) A visual comparison of the different supervision methods on the ACDC dataset.

Pixel Label Shape descriptor Class
0 RV (in pixels) RV Myo LV
; BACKE\I;OUND Object volume 6 3100 800 1600
Centroid location € (125, 80) (125, 125)
: Avg. dist. to centroid ® (20, 15) (15, 20) (10, 10)

65536 BACKGROUND Object length £ 750 1000 500
(b)  Pixel-wise labels (c) Shape descriptors
(65k discrete values) (16 continuous values)



A few shape descriptors are surprisingly

powerful in unsupervised domain
ada ptation [Bateson et al., MedIA 2022 (under revision)]

Ground truth No adapt Shape-constrained
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Merci!
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