

Few-Shot Learning Apprendre avec peu de données

Ismail Ben Ayed *ETS Montreal* Ismail.benayed@etsmtl.ca

www.dataia.eu

Few-shot learning (FSL)

Few-shot tasks at testing time

Few-shot learning

- Humans recognize easily with few examples
- Modern ML generalize very poorly

Why it is interesting

Available data sets represent small sub-domains of the world

Cityscapes (5k images; 1.5h per image): Urban scenes, less than 30 classes

A dense prediction task: semantic segmentation

New classes, but with few examples

Semi-supervision A lot of non-annotated data, and a fraction of points

annotated

Figures from Lin et al. Scribblesup: Scribble-supervised convolutional networks for semantic segmentation, CVPR 2016

Labels: not only expensive, but might need expert knowledge

Crowdsourcing?

Select all images with **esophagus** Click verify once there are none left.

C A i

VERIFY

Dense 3D annotations: several hours (of radiologist time)

Domain shifts make things worse

Even with full annotations in one domain

[MRI Prostate segmentation: Figure from Zhu et al., Boundary-weighted Domain Adaptive Neural Network for Prostate MR Image Segmentation ArXiv 2019]

Unsupervised domain adaptation

[Images from Dou et al., PnP-AdaNet: Plug-and-play adversarial domain adaptation network with a benchmark at cross-modality cardiac segmentation ArXiv 2018]

Bad generalization to the target

[Images from Dou et al., PnP-AdaNet: Plug-and-play adversarial domain adaptation network with a benchmark at cross-modality cardiac segmentation ArXiv 2018]

Wide interest in computer vision as well Domain shifts are everywhere BUT we cannot label everywhere

Cityscapes (5000 images): labeling of 1 image takes 90 min at average [Cordt et al., CVPR 2016]

FSL, SSL and UDA are closely related problems

Few-Shot/SSL/UDA in a nutshell: We are leveraging unlabelled data with priors

-- Structure-driven priors: Regularization

- -- Knowledge-driven priors (e.g., anatomical constraints)
- -- Invariance priors (e.g., contrastive learning)
- -- Multi-modal priors (e.g., text info associated with the images)

Learning from labeled and unlabeled data

Regularized losses for segmentation

[Tang et al., ECCV 2018]

$$\min_{\theta} \sum_{p \in \mathcal{L}} l(\mathbf{y}^p, \mathbf{s}^p_{\theta}) + \sum_{p, q \in \mathcal{L} \cup \mathcal{U}} w_{p, q} \| \mathbf{s}^p_{\theta} - \mathbf{s}^q_{\theta} \|$$

Regularized losses for segmentation [Tang et al., ECCV 2018]

97.6% of full supervision performance with 3% of the labels!

Laplacian regularized few-shot image classification [Ziko et al., ICML 2020]

The results question and abundant meta-learning literature

Methods	Network	1-shot	5-shot
MAML [Finn et al., 2017]	ResNet-18	49.61 ± 0.92	65.72 ± 0.77
Chen [Chen et al., 2019]	ResNet-18	51.87 ± 0.77	75.68 ± 0.63
RelationNet [Sung et al., 2018]	ResNet-18	52.48 ± 0.86	69.83 ± 0.68
MatchingNet [Vinyals et al., 2016]	$\operatorname{ResNet-18}$	52.91 ± 0.88	68.88 ± 0.69
ProtoNet [Snell et al., 2017]	ResNet-18	54.16 ± 0.82	73.68 ± 0.65
Gidaris [Gidaris and Komodakis, 2018]	$\operatorname{ResNet-15}$	55.45 ± 0.89	70.13 ± 0.68
SNAIL[Mishra et al., 2018]	$\operatorname{ResNet-15}$	55.71 ± 0.99	68.88 ± 0.92
AdaCNN [Munkhdalai et al., 2018]	$\operatorname{ResNet-15}$	56.88 ± 0.62	71.94 ± 0.57
TADAM [Oreshkin et al., 2018]	$\operatorname{ResNet-15}$	58.50 ± 0.30	76.70 ± 0.30
CAML [Jiang et al., 2019]	$\operatorname{ResNet-12}$	59.23 ± 0.99	72.35 ± 0.71
TPN [Yanbin et al., 2019]	ResNet-12	59.46	75.64
TEAM [Qiao et al., 2019]	ResNet-18	60.07	75.90
MTL [Sun et al., 2019]	ResNet-18	61.20 ± 1.80	75.50 ± 0.80
VariationalFSL [Zhang et al., 2019]	ResNet-18	61.23 ± 0.26	77.69 ± 0.17
Transductive tuning [Dhillon et al., 2020]	ResNet-12	62.35 ± 0.66	74.53 ± 0.54
MetaoptNet[Lee et al., 2019]	ResNet-18	62.64 ± 0.61	78.63 ± 0.46
SimpleShot [Wang et al., 2019]	ResNet-18	63.10 ± 0.20	79.92 ± 0.14
CAN+T [Hou et al., 2019]	$\operatorname{ResNet-12}$	67.19 ± 0.55	80.64 ± 0.35
LaplacianShot (ours)	ResNet-18	$\textbf{72.11}\pm0.19$	82.31 ± 0.14

Several recent baselines: [Chen et al., ICLR'19]; [Tian et al., ECCV'20] [Dhillon et al., ICLR'20]; [Ziko et al., ICML'20]; [Boudiaf et al., NeurIPS'20]

More realistic benchmark: Further surprises [Veilleux et al., NeurIPS 2021]

Constrained optimization (in deep
networks)Data meet domain knowledge

Example: Left ventricle segmentation in cardiac MRI with volumetric constraints

Full annotations

Partial annotations for cross-entropy

Example: Left ventricle segmentation in cardiac MRI with volumetric constraints

[Kervadek et al., MedIA 2019]

The exciting part: 90% of full supervision Dice with 0.1% of labels

The surprising part: Lagrangian optimization is much worse than a simple penalty

Beyond size: Exploring shape priors as functions of network outputs

[Kervadek et al., MIDL 2021 (Best-paper

(a) A visual comparison of the different supervision methods on the ACDC dataset.

Pixel	Label	Shape descriptor Class			
0 RV		(in pixels)	RV	Муо	LV
1	BACKGROUND	$\fbox{0} \\ \fbox{0} \\ \fbox{0} \\ \fbox{0} \\ \r{0} \\ $	3100	800	1600
2	LV	Centroid location \mathfrak{C}	(125, 80)	(125,	125)
	:	Avg. dist. to centroid \mathfrak{D}	(20, 15)	(15, 20)	(10, 10)
65536	Background	Object length \mathfrak{L}	750	1000	500
(b) Pixel-wise labels (c) Shape descriptors (65k discrete values) (16 continuous values)					

award)]

A few shape descriptors are surprisingly powerful in unsupervised domain adaptation [Bateson et al., MedIA 2022 (under revision)]

References & acknowledgments

I. M. Ziko, J. Dolz, E. Granger and I. Ben Ayed, Laplacian regularized few-shot learning, International Conference on Machine Learning (ICML), 2020 https://github.com/imtiazziko/LaplacianShot

O. Veilleux, M. Boudiaf, P. Piantanida and I. Ben Ayed, Realistic Evaluation of Transductive Few-Shot Learning, *Neural Information Processing Systems (NeurIPS), 2021* <u>https://github.com/oveilleux/realistic_transductive_few_shot</u>

H. Kervadec, J. Dolz, M. Tang, E. Granger, Y. Boykov, I. Ben Ayed, Constrained-CNN losses for weakly supervised segmentation, *Medical Image Analysis (MedIA), 2019* <u>https://github.com/LIVIAETS/SizeLoss_WSS</u>

M. Tang, F. Perazzi, A. Djelouah, I. Ben Ayed, C. Schroers, Y. Boykov, On regularized losses for weakly supervised CNN segmentation, *European Conference on Computer Vision (ECCV), 2018* <u>https://github.com/meng-tang/rloss</u>

M. Bateson, J. Dolz, H. Kervadec, H. Lombaert, I. Ben Ayed, Souce-free domain adaptation for image segmentation, *Medical Image Analysis (MedIA), 2022 (under revision)* <u>https://github.com/mathilde-b/SFDA</u>

H. Kervadec, H. Bahig, L. Letourneau-Guillon, J. Dolz, I. Ben Ayed, Pixel-wise supervision for segmentation: A few global shape descriptors might be surprisingly good!, *Medical Imaging with Deep Learning (MIDL), 2021* <u>https://github.com/hkervadec/shape_descriptors</u>

Merci!