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Context

THE STATISTICAL PROBLEM IS ONLY A PROXY



Machine Learning today

§An established academic discipline
o that attracts bright students.

§Pervasive applications
o all over the Internet
o and sometimes in the real world.

§Massive investments.
§Massive returns. And more…
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Statistical machine learning
Absent a formal specification of what makes an image represent a 
mouse or a piece of cheese, we must 

§ either formulate heuristic specifications,
and write a program that targets them.

§ or rely on data, formulate a statistical proxy problem, 
and use a learning algorithm. 



Observation 1
The statistical problem is only a proxy

Example: detection of the action “giving a phone call”

(Oquab et al., CVPR 2014)
~70% correct (SOTA in 2014)
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Observation 1
The statistical problem is only a proxy

Example: detection of the action “giving a phone call”

Not giving a phone call.

Giving a phone call ????The learning algorithm is statistically correct!

In a typical static image dataset, when an image 

shows a person near a phone, chances are that the 

person is giving a phone call (a selection bias in fact.) 

The learning algorithm is statistically correct 
and is also missing the point!



Observation 2:
Statistical guarantees are too weak

What is the nature of this statement?
§ This does not mean that one rolls a dice for each picture.

§ This statement refers to a specific testing set.
The error guarantee is lost if the image distribution changes.

“DeepVisotron™,℠,® detects 
10000 object categories with 

less than 1% errors.”



Observation 2:
Statistical guarantees are too weak
§ A smart programmer reasons
that an inventive use of a sorting 
routine can solve a problem.
§ The sorting routine fulfils its 
contract by sorting the data 
(however strange.)

§ The code of the smart 
programmer does what was 
intended.

§ A smart programmer reasons that an 
inventive use of a trained object 
recognizer can solve a problem.
§ The object recognizer receives data 
that does not resemble the testing 
data and outputs nonsense.

§ The code of the smart programmer 
does not work.
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§ A smart programmer reasons
that an inventive use of a sorting 
routine can solve a problem.
§ The sorting routine fulfils its 
contract by sorting the data 
(however strange.)

§ The code of the smart 
programmer does what was 
intended.

§ A smart programmer reasons that an 
inventive use of a trained object 
recognizer can solve a problem.
§ The object recognizer receives data 
that does not resemble the testing 
data and outputs nonsense.

§ The code of the smart programmer 
does not work.

Collecting new data and 
retraining may help … or may not! 

A ⇒ B   
does not ensure that
almost A ⇒ almost B



Further observations
§ Adversarial examples
§ Fairness questions in machine learning
§ Spurious correlations
§ Shortcut learning

We need to learn relations that are less tied 
to a particular data distribution.

Substantial departure from the statistical 
machine learning framework.

(Szegedy et al. 2014)  (Kleinberg et al. 2018) (Geirhos et al. 2020)  and many others



Out-of-distribution 
generalization

WHAT THEN CONNECTS THE TRAINING AND TESTING DATA?



Defining “out of distribution”
Testing data not distributed like the training data?
A very poor definition of a recurrent problem.

The real questions:
§ Why do we expect a machine learning system to work?

§ What distribution changes are acceptable? 

§ What unites training data and testing data?



Distributionally robust optimization
Inspired by robust statistics:

§ Define a set ℬ of distributions “close enough” to the training distribution

§ Optimize the expected loss for the worst distribution in ℬ

min
!

max
"∈$

𝔼(&,()~"[ℓ(𝑥, 𝑦, 𝑤)]

§ Question 1: How to express “close enough” ?

§ Question 2: Does it matter ?

(Huber, 1981) (Bagnell. 2005) and many others  



f-divergence balls
The Kullback-Leibler divergence is a common measure of distribution closeness, often 
considered attractive because it relates to information theory. This is a member of the 
broader family of 𝑓-divergences.

Let ℬ be a 𝑓-divergences ball centered on the training distribution 𝑝!
This this idea hits all the buzzwords, but (theorem) …

For a classification loss, solving the DRO problem
min
"

max
#∈%

𝔼(',))~# ℓ 𝑥, 𝑦, 𝑤

yields the same solution as the ordinary ERM problem
min
"

𝔼(',))~#! ℓ 𝑥, 𝑦, 𝑤

(Hu et al., 2018)



Wasserstein balls

Using Wasserstein distance balls has proven more successful, with applications in 
finance and in making deep learning classifier more robust against adversarial 
examples.

Let ℬ be a Wasserstein ball centered on the training distribution 𝑝! …

Why is it different?

What does a Wasserstein ball look like anyway?

(Pflug et al., 2007) (Staib et al., 2017) and many others



Constructing a Wasserstein ball

§ Let (𝑥, 𝑦) be the training examples following distribution 𝑝!
§ Let 𝑧 = 𝜑(𝑥, 𝜀") be patterns perturbed by an adversary

§ Let 𝑝#represent the distribution of (𝑧, 𝑦) for a given 𝜑.

𝜑 belongs to the set of all functions such that 𝔼 𝑥 − 𝑧 ≤ 𝑀

⇔ 𝑝# belongs to a Wasserstein ball centered on 𝑝$.

Perturbation function Random noise

(Bottou, in preparation)



Structural equation model (SEM)
The Wasserstein ball ℬ represents in fact 
the family of distributions generated by 
manipulating a causal model of the data:

𝑥 = 𝑔 𝜀&
𝑧 = 𝜑 𝑥, 𝜀+
𝑦 = 𝑓(𝑥, 𝜀()

Genuine pattern 
distribution

Pattern perturbation

Classification function 
of interest

𝑋

𝑌

𝑍

𝑓

𝜑

Some people like to 

think of SEMs as DAGs!

(Wright 1921)



Why do distribution change?

§ Any learning process assumes a connection between training and testing data.

⇒We must say how training and testing distributions are related.

§ An obvious answer in retrospect

Distributions change because the underlying causal process is
perturbed for some reasons (a change of context, an adversary, …)



Digression 
Causal inference, Pearl style.

Given observed conditional 
distribution on this model, …

… can we predict conditional 
distributions on that model ?

(Pearl, 2009)    (Bottou, Peters, et al. 2013)



Why do distribution change?
§An obvious answer in retrospect

Distributions change because the 
underlying causal process is perturbed for 
some reasons (a change of context, an 
adversary, …)

Perturbations of simple causal models give 

Wasserstein balls. Perturbations of more complex 

causal models can give much more complicated ℬ. 

(Peters, Bühlman, Meinshausen, 2016)



Questioning our goals…

“ Is it true that we merely want to predict a predefined variable of interest Y from 
predefined variables Z in a manner that is robust under certain distribution 
changes?  

We have just argued that, in order to solve such a problem, we need to 
understand the causal structure of our data.  Knowing the causal structure of 
our data allows us to answer much more refined questions. 

For instance, we might be able to construct a different prediction problem that 
serves our ultimate purpose equally well but is much less affected by 
distribution changes.”

(Bottou, 2022, in preparation)



Causal invariance

Martin Arjovsky Ishaan Gulrajani David Lopez-Paz



Causal inference with DAGs

Given observed conditional 
distribution on this model, …

… can we predict conditional 
distributions on that model ?



Bayes’ 
rule

Causal inference with DAGs
Given observed conditional 

distribution on this model, …
𝑃!(𝐴, 𝐵|𝐶, 𝐷)

… can we predict conditional 
distributions on that model ?

𝑃"(𝑈, 𝑉|𝑅, 𝑆)

Invariant distributions
𝑷𝟏 𝑿, 𝒀 𝒁, 𝑻
= 𝑷𝟐(𝑿, 𝒀|𝒁, 𝑻)

Knowledge about the 
intervention
𝑃"(𝑋, 𝑆|𝑅)

Bayes’ 
rule



Invariance is the key

§ This process is formalized by Pearl’s do-calculus. 
The assumed graph structure informs us about the invariant conditionals

§ Rubin’s methods of potential outcomes is less formal, yet
“ignorability” assumptions inform us about the invariant conditionals



DAG issues : (1) the variables

𝒚
�̇�

𝝓 𝒈



DAG issues : (2) the structure
§ Even if we know what the variables are …

§ Even if we observe all relevant variables …

§ Even if all causal edges have a trace in the joint distribution ( “faithfulness” ) …

Reconstructing a causal graph is a messy business.
§ Multiple DAGs are equivalent (strong) or compatible with the data (weak)

§ Each reconstruction decision depends on statistical tests that may fail.

§ Reconstructing a useful graph is often an all-or-nothing affair.

(Spirtes, Glymour, et al., 2000) (Chickering, 2003) (review: Glymour et al., 2019)



DAG issues : (3) directionless causation

Does P cause V and T?  Or does T cause V and P?   Or …

§ If we push a piston, we change V and cause a change in P and T.

§ If we heat the mixture, we change T and possibly cause changes in P and V.

The direction of the arrow depends on the intervention

𝑃𝑉 = 𝑛𝑅𝑇

(von Wright, 1971, 1974)    (Dawid 2010)



How do we solve causal inference 
problems in physics

Method 1:  ODE -> DAG -> invariants 

§ Numerical integration scheme defines a DAG

§ Must predict all the trajectory to determine the final state. 

Method 2:  Use invariants directly

§ Write equations that describe the intervention

§ Write equations that describe invariants (local or universal)

§ Solve!

𝑚�̈� = 𝑓(𝑥, �̇�)



How do we solve causal inference 
problems in physics

Method 1:  ODE -> DAG -> invariants 

§ Numerical integration scheme defines a DAG

§ Must predict all the trajectory to determine the final state. 

Method 2:  Use invariants directly

§ Write equations that describe the intervention

§ Write equations that describe invariants (local or universal)

§ Solve!

𝑚�̈� = 𝑓(𝑥, �̇�)

Invariance ⇔ Causation

(Cartwright 2003) (Woodward 2005) 

Can we discover invariances more easily than DAGs?



Multiple environments
Following Peters et al. (2016), we consider that data from each 
environment 𝑒 comes with a different distribution 𝑃=.

𝑃! = 𝑃(𝑋! , 𝑌!) for  𝑒 = 1,2,3…

§ Training sets 𝐷= = (𝑥>= , 𝑦>=) ~ 𝑃= are provided for some 𝑒.

§ We want a predictor 𝑓 𝑥 ≈ 𝑦 that works for many 𝑒. 



Intuition

“If we find a representation in which 
all falling objects obey the same laws, 

then we possibly understand something useful.”

𝒚
�̇�

𝝓 𝒈



Invariant representation

𝜙 𝑔

𝑓

𝑥 𝑓 𝑥 ≈ 𝑦

Find a representation 𝜙 𝑥
Such that the regression from 𝜙 𝑥 to 𝑦

is invariant across environments 



Invariant representation

𝜙 𝑔

𝑓

𝑥 𝑓 𝑥 ≈ 𝑦

Find a representation 𝜙 𝑥
Such that the regression from 𝜙 𝑥 to 𝑦

is invariant across environments And also has low error…



Invariant risk minimization (IRM)

Minimize a regularized cost

A
=

1
𝑛=

𝑌= − 𝑓!(𝑋=) ?

+𝜅A
=

Ω=(𝑤)

𝐶=(𝑤)

What’s in this term?

Average error across 
all environments.

Penalty that favors 
invariant solutions



Challenges

§ Suppose 𝑥 can be split as 𝑥'()(*+,-, 𝑥./0'120.

§ Invariance is achieved when 𝜙 suppresses 𝑥./0'120..  

§Noncontinuity : If 𝜙 does not fully suppress 𝑥./0'120., then 𝑔 can restore it.

𝜙 𝑔

𝑓

𝑥 𝑓 𝑥 ≈ 𝑦



Equivalence classes

𝜙 𝑔

𝑓

𝑥 𝑓 𝑥𝜓!"𝜓

𝜙’ 𝑔’



𝜙 𝑔𝜓!"𝜓

𝜙’ 𝑔’

Simplifying our problem

If 𝑔’ can be anything we want, 
then we can choose it a priori (e.g., the identity) 
and we do not need to optimize its parameters.



𝜃

IRM v1

Regularization favors 
weights 𝑤 such that

no environments would 
benefit from 𝜃 ≠ 1.

𝑓!(𝑥)𝑥

Insert a “frozen” domain adaptation layer

⌦e(w) =

✓
@Ce

@✓

��
✓=1

◆2

<latexit sha1_base64="tF0tDvneB8Pqwb9f4UrirB32pI8="></latexit>

(Arjovsky, Bottou, Gulrajani, Lopez-Paz, 2019)



Colored MNIST
Digits with misleading  colors

Y=0 Y=1
{0,1,2,3,4} 0.75 0.25
{5,6,7,8,9} 0.25 0.75

Red Green
Y=0 1 − 𝑒 𝑒
Y=1 𝑒 1 − 𝑒

The optimal classification rate on 
the basis of the shape only is 75%.

Random guess is 50%.

During the training 𝑒 ∈ 0.1, 0.2 .
The color is a better indicator than 
the shape, but not a stable one.

Then we test with  𝑒 = 0.9.

(Arjovsky, Bottou, Gulrajani, Lopez-Paz, 2019)



Colored MNIST

§Network is a MLP with 256 hidden units on 14x14 images.
§Invariant regularization tuned high : regularization term is nearly zero.

Training with
𝒆 ∈ {𝟎. 𝟏, 𝟎. 𝟐}

Testing with
𝒆 ∈ {𝟎. 𝟏, 𝟎. 𝟐}

Testing with
𝒆 = 𝟎. 𝟗

Minimize empirical risk 
after mixing data from 

both environments
84.3% 10.1%

Minimize empirical risk 
with invariant 
regularization

70.8% 66.9%



Follow up work

Alternate algorithms and constraints
• IGA (Koyama et al., 2020); Invariant Games (Ahuja et al. 2020); 
• vREX (Krueger at al. 2020); FISH (Shi et al., 2021); FISHr (Rame et al, 2021); 
• SD; RSC, LfF, CLOvE, MAML-IRM, …

§ A couple applications to real data 
§ Wildcam dataset (https://ff13.fastforwardlabs.com) 
§ Toxic language classification (Adragna et al., 2020)

§ Benchmarking studies
§ Domainbed (Gulrajani et al., 2020)



Painful lesson

Trying invariant learning on real OOD problems:
§ Invariant learning sometimes yields a small improvement.

§ But these results do not measure with our hopes…
§ And always come after a finicky optimization…



Invariance, 
optimization, 
and features

David Lopez-PazJianyu Zhang

(Zhang, Bottou et al., arXiv 2022 )  



Algorithms for OoD learning
• IRMv1 (Arjovsky et al., 2018)
• IGA (Koyama et al., 2020); Invariant Games (Ahuja et al. 2020); 
• vREX (Krueger at al. 2020); FISH (Shi et al., 2021); FISHr (Ramé et al, 2021); 
• SD, RSC, LfF, CLOvE, MAML-IRM, …

All these algorithms work by defining 
rather complicated penalty terms Ω!(𝑤).
It is usually necessary to pre-train without 
the penalty (𝜅 = 0), then continue with
with a well-chosen weight 𝜅.



Optimization troubles
Using the final 𝜅 recommended by the 
authors, how does the OoD
performance depends on the number 
of pre-training iterations (𝜅 = 0) ?

(ColorMNIST again)
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OoD penalties are hard to optimize

- We could reduce 𝜅, but …



Optimization troubles
§ Instead of pre-training, what if we initialize the network with a correct solution?

(in the case of ColorMnist, with weights that only depend on the shape, not the color…)



Optimization troubles
§ Instead of pre-training, what if we initialize the network with the correct solution?

(in the case of ColorMnist, with weights that only depend on the shape, not the color…)

OoD penalties are hard to optimize

We could reduce 𝜅, but …

OoD penalties are already too weak 

to enforce the intended invariance constraints.



Deep learning optimization

§Finding features that work for in-distribution testing 
has proven to be easier than expected.

Training overparametrized deep nets works remarkably well.

§Finding the correct solution —a solution that also works 
out-of-distribution— might be far harder.



Gradient starvation

§ The network associates the class 
“cow” with the presence of grassy 
texture in the image.

§ This association leads to high 
accuracy, leaving only a few training 
examples unaccounted for.
§ Not enough training examples to give 
a strong enough gradient.

(Pezeshki et al., 2020)



Gradient starvation = ill-conditioning

§ The network associates the class 
“cow” with the presence of grassy 
texture in the image.

§ This association leads to high 
accuracy, leaving only a few training 
examples unaccounted for.
§ Not enough examples to 
give a strong enough gradient.

There is a descent path towards the “right features” (e.g
the cow shape) but this path is ill-conditioned. 

§ Shallow descent in the direction that elicits the right 
features (few examples benefit from this)

§ Strong curvature in the directions that reduce the 
network dependency on the shortcut features (many 
examples could suffer from an inexact change.)



Initializing with a rich set of features

Difficult optimization can often be helped by a good initialization

§ Initialize the network with a rich features set.
§ Let the learning algorithm pick the one it likes



Rich Feature Construction (RFC)
- basic idea

§ Train a network   
min
,,-

𝔼#[ℓ(𝑦, 𝑔 Φ 𝑥 ]

§ Freeze features and find pessimal data reweighting
max
.∈𝒬

min
-
𝔼.[ℓ(𝑦, 𝑔 Φ 𝑥 ]

§ Training again forces discovering new features Φ’
min
,0,-

𝔼.[ℓ(𝑦, 𝑔 Φ′ 𝑥 ]

§ Gather old and new features
Φ ∪Φ0 → Φ12"

§ Repeat 



Rich Feature Construction (RFC)
- more details

§ Train a network   
min
,,-

𝔼#[ℓ(𝑦, 𝑔 Φ 𝑥 ]

§ Freeze features and find pessimal data reweighting
max
.∈𝒬

min
-
𝔼.[ℓ(𝑦, 𝑔 Φ 𝑥 ]

§ Training again forces discovering new features Φ’
min
,0,-

𝔼.[ℓ(𝑦, 𝑔 Φ′ 𝑥 ]

§ Gather old and new features
Φ ∪Φ0 → Φ12"

§ Repeat 

Weight on subsets of 
examples

Distillation

Duality trick gives a DRO formulation that saves distillation time 



Initializing with RFC 

Color MNIST



Wilds / Camelyon17



Wilds / Camelyon17

Solvable if we model
§ imaging machines effects
§ and batch effects
Assume we don’t know that..

https://wilds.stanford.edu/datasets/#camelyon17



Wilds / Camelyon17

“While the camelyon17 dataset is small and fast to train on, we 
advise against using it as the only dataset to prototype methods 
on, as the test performance of models trained on this dataset 
tend to exhibit a large degree of variability over random seeds.”

Leaderboard best:   74.7% ± 7.1%

https://wilds.stanford.edu/datasets/#camelyon17



2RFC + ERM !

Frozen features !

Leaderboard best: 
74.7 ± 7.1 %

Everything works!



Wilds/Camelyon17



Rich feature initialization

§ Everything works robustly after RFC!

§ RFC needs no additional data but is computationally cumbersome

§ RFC is just one way to construct rich features

§ Other ways include self-supervised methods
- usually with additional data
- maybe they do not need so much data, in fact…



Conclusion



Recap

§ We need learning algorithms that are less dependent on the data distribution

§ Out-of-distribution generalization is tied to causation

§ There are lots of causation hints out there

§ Causation can be approached through invariances

§ Discovering invariant features can be formulated mathematically

§ In order to find them in practice, we must start with a good set of features




