Knowledge Structuring for Cross-disciplinary Data Exchange and Collaboration

Teruaki Hayashi

(Ohsawa Group, Yamanishi Team)

Department of Systems Innovation School of Engineering The University of Tokyo

Yamanishi Team

Discovering Deep Knowledge from Complex Data

Introduction

Big Data

- Increasing capacity of storage
- Analysis method for heterogeneous data

Open Data

- The use of secondary data
- Massive amounts of data from the governments are available

Personal Devices

- High granularity personal data
- Purchase logs, life logs, etc.

Sensors

- Internet of Things
- High density data are available

The potential benefits of reusing and analyzing massive amounts of data have been

discussed by various stakeholders from diverse domains.

Why Data Exchange?

Decision makers in the society recognize the different world, even though they see the same world (Metcalfe, 1998)

background knowledge and available opportunities

- The two problem solvers may construct different facts even if they observe the same event (data) (Hayashi et al., 2006)
 - □ the different perspectives, contexts and background knowledge

Why Data Exchange?

The agent-in-the-world (Boisot & Canals, 2004)

Data exchange are important to recognize the world correctly, and to encourage the cross-disciplinary data driven innovation.

Our Approach

To encourage cross-disciplinary data exchange and collaboration...

It is important to understand the events in the world and the relationships of obtained data correctly.

Analyzing the structural features of the population of data from different domains, rather than analyzing individual data

A data model to discuss different data on the same field is necessary to quantitatively evaluate the trends and features of the population of data.

It is effective to use metadata (data of data) obtained from different domains as the analysis subject.

Data Jacket (DJ)

- a structured summary of data described in natural language
- DJ has been developed as a technique for sharing information about data and for considering the potential value of datasets, with the data itself hidden.
- Even if data itself is not open, by publishing DJ, data could be recognizable and understandable not only for humans, but also for machines.
- Published DJs enable data owners, data users and data analysts to understand the contents of each dataset, and start to communicate about data utilizations among stakeholders.

title: POS data of the supermarket in Tokyo variable label: customer ID, date, brand name type: int, string format: RDB sharing policy: in particular conditions

Y. Ohsawa et al., "Data Jackets for Externalizing Use Value of Hidden Datasets," 18th International Conference on Knowledge Based and Intelligent Information and Engineering System (KES2014), pp.946-953, Procedia Computer Science, Vol.35, pp.946-953, 2014.

Examples of DJs

Earthquake and related disaster information

ID

262

OUTLINE

This is the summary of earthquakes and related disasters. Will be updated for several times after the first release as new knowledge is obtained through investigation.

VARIABLE LABEL

SHARING POLICY

COLLECTING COST

TYPE

TEXT, TABLE

With anyone

Available at the website of Fire and Disaster Management Agency of Japan.

FORMAT

PDF

What We can do with DJs

We can...

- understand who owns the data we are interested in.
- handle datasets in standardized format by describing each dataset in metadata.

Understanding Data

Visualization of Data

Linkage of Data: achieved by the combinations of variables in data datasets having common Variable Labels are highly likely to be combined Assuming that each node is a DJ, a link between DJ nodes connects when both DJs have a common Variable Label. customer ID weather POS data of the weather data supermarket in date in Tokyo Tokyo temperature brand name \|/ /|\ POS data of the weather data in supermarket in

Tokyo

Tokyo

Visualization of Data

features	value
The number of links	11077
The number of nodes	652
Average degree	33.98
Density	0.0522
Average cluster coefficient	0.703
assortativity	0.561
diameter	11
Average shortest path	3.442

High average cluster coefficient and low density

- close each other locally and sparse globally
- □ Similar data tends to connect strongly and consists the locally dense network

Shorter average shortest path and high assortativity

□ The structure is similar to the network of human relations

Visualization of Data

Degree centrality

Data name	Value
Facebook data	0.192
The locational information of public toilets	0.187
Twitter data	0.186
The data of earthquakes	0.181
The observation data of ozone layers	0.180

Betweeness centrality

The indicator that how a node bridges the nodes of other groups

14

Data name	Value
The traffic data of highways	0.221
Social Networking Service data	0.071
Sales data of food consumption by areas	0.064
Happiness around the World	0.054
The book records data	0.035

- Data is the economic goods in the Data Market
- The sharing policy is one of the important attributes of the data
- We analyzed the network of data considering the sharing policy

Features	Public Data	Private Data
The number of links	5931	1068
The number of nodes	388	216
Average degree	30.57	9.89
Density	0.079	0.046
Average cluster coefficient	0.719	0.611
assortativity	0.556	0.456

Degree Centrality	Betweenness Centrality
Facebook data	The traffic data of highways
The locational information of public toilets	Social Networking Service data
Twitter data	Sales data of food consumption by areas
The data of earthquakes	Happiness around the World
The observation data of ozone layers	The book records data

Private Data exists more between Public Data than between Private Data.

This result suggest that Private Data may play a role of combining data of different areas.

Support Systems

Necessity of Support Systems

It is difficult for users to accurately obtain data corresponding to their own interests.

- the combination of databases may occur a serious violation of privacy (Acquisti & Gross, 2009; Xu et al., 2014)
- the size of the datasets is meaningless, and understanding the values of small data is more important (Boyd & Crawford, 2012)
- It is difficult to learn the kinds of data that are related to our interests as well as the means to obtain and utilize them (Hayashi & Ohsawa, 2016).

Retrieval of Data

Structuring Knowledge of Data Utilization created in the data utilization workshops (Innovators Marketplace on Data Jackets)

Reusing data utilization knowledge may be useful for Data Users to retrieve information about data related to their interests.

Retrieval of Data

 $\begin{array}{c|c} DJ & DJ_{dj} \\ \hline DJ_{dj} \cap DJ_{sol} \cap \overline{DJ_{req}} \\ \hline DJ_{dj} \cap DJ_{sol} \cap \overline{DJ_{req}} \\ \hline DJ_{req} \cap DJ_{sol} \cap \overline{DJ_{dj}} \\ \hline DJ_{sol} & DJ_{dj} \cap DJ_{sol} \cap DJ_{req} \\ \hline DJ_{sol} & DJ_{req} \\ \hline DJ_{req} \end{array}$

query sentence: $D_i = \{word_1, word_2, \dots, word_j\}$ $(i, j \in \mathbb{N})$ return from DJ database: $DJ_{dj(Di)} = \bigcup_{j \in \mathbb{N}} DJ_{dj(wordj)}$ return from Sol database: $DJ_{sol(Di)} = \bigcup_{j \in \mathbb{N}} DJ_{sol(wordj)}$ return from Req database: $DJ_{req(Di)} = \bigcup_{j \in \mathbb{N}} DJ_{req(wordj)}$

Set of DJs considering the numbers of retrieving.

T. Hayashi, Y. Ohsawa, "Data Jacket Store: Structuring Knowledge of Data Utilization and Retrieval System," Transactions of the Japanese Society for Artificial Intelligence, 31 (5),2016.

Implementation

Knowledge graph of data utilization is represented based on a undirected graph (G_W)

$$G_W = (V_W, E_W)$$

$V_{W} = \bigcup_{\substack{w \in \{req, sol, dj\}}} V_{w}$ $(V_{i} \cap V_{j} = \emptyset(i \neq j), V_{i} \neq \emptyset)$	a set of nodes
$E_W = \{\{req_i, sol_j\}, \{sol_k, dj_l\} req, sol, dj \in W\}$	a set of edges

Knowledge Graph of Data Utilization

24

The result shows that the structured knowledge of data utilization may support the significant discovery of data related to users' interests, even if users do not have sufficient knowledge of the data.

Improving the Transparency of the Retrieval Process

Structural analysis for evaluating knowledge elements in the data driven innovation

T. Hayashi, Y. Ohsawa, "Retrieval System for Data Utilization Knowledge Integrating Stakeholders' Interests," AAAI Spring symposium 2018 Beyond Machine Intelligence: Understanding Cognitive Bias and Humanity for Well-being AI, 2018.

VARIABLE QUEST (VQ)

VARIABLE QUEST (VQ) is the network visualization of VLs using the matrix-based inferring method of VLs by unifying co-occurrence graphs [Hayashi & Ohsawa, 2017].

T. Hayashi, Y. Ohsawa, "Matrix-based Method for Inferring Variable Labels Using Outlines of Data in Data Jackets," The Pacific-Asia Conference on Knowledge Discovery and Data Mining 2017 (PAKDD2017), 2017. T. Hayashi, Y. Ohsawa, "VARIABLE QUEST: Network Visualization of Variable Labels Unifying Co-occurrence Graphs," IEEE-ICDM Workshops 2017, pp.577-583, 2017.

Inferring VLs

<u>Model 1:</u>

When a pair of datasets is similar each other, the datasets have the similar variables. Outline of data (OD) VLs (VL)

Model 2:

A pair of variables (vl_i and vl_j) appearing frequently in the same datasets.

Term-VL Matrix EC

The Term-VL matrix *EC* is equivalent to the adjacency matrix of the 5-partite graph, which consists of 5-disjoint sets of nodes.

 g_{ij} represents the number of paths from the *i*th term (t_i) to the *j*th VL (vl_j) in the 2nd VL nodes, by way of the 1st OD nodes, the 1st VL nodes, and the 2nd OD nodes.

Implementation

Co-occurrence graph of VLs is represented based on a weighted undirected graph (G_S)

 $G_S = (V_S, E_S, f, h)$

$$f: V_S \to L_{V_S}, h: E_S \to L_{E_S}$$

$V_S = \{ vl_i \in S \}$	a set of nodes
$E_{S} = \left\{ (vl_{i}, vl_{j})_{dj_{k}} \middle vl_{i}, vl_{j} \in S, vl_{i} \neq vl_{j} \right\}$	a set of edges
$L_{V_S} = \{ \text{frequency}(vl_i) vl_i \in S \}$	the frequency of VLs
$L_{E_S} = \{ \operatorname{link}(vl_i, vl_j) vl_i, vl_j \in S, vl_i \neq vl_j \}$	the frequency of co-occurrences
$\operatorname{link}(vl_i, vl_j) = \sum_{k=1}^{D} vl_i _{dj_k} vl_j _{dj_k}$	of a pair of VLs

Example 1

 OD_x . Japan weather data provided by Japan Meteorological Agency, which includes information about the temperature and weather of prefectures.

Term-VL Matrix EC	
VL	Similarity
weather	0.318
hours of sunlight	0.313
rainfall	0.307
temperature	0.293
vapor pressure	0.293
solar radiation	0.293
depth of snowfall	0.293
wind velocity	0.293
weather	0.318
hours of sunlight	0.313
:	•

Example 2

 OD_{x} : The information about location and installation of streetlights in Paris.

Term-VL Matrix EC	
VL	Similarity
light type	0.557
life span	0.557
color temperature	0.557
lump type	0.557
color rendering	0.557
pillar type	0.557
luminous flux	0.557
power consumption	0.533
ID number	0.505
illumination types	0.465
:	•

Discussion for Data Utilization

Innovators Marketplace on Data Jackets (IMDJ)

□ IMDJ is a gamified workshop for discussing the data utilization.

Data owners provide their datasets as DJs, data analysts create solutions for solving data users' problems which are stated as requirements, and evaluate them.

Y. Ohsawa, T. Hayashi, and H. Kido, "Restructuring Incomplete Models in Innovators Marketplace on Data Jackets," Springer Handbook of Model-Based Science, L. Magnani, T. Bertolotti (eds), Springer, pp.1015-1031, 2017.

Examples of Use Cases (1/2)

Paid holidays & stock price data

Examples of Use Cases (2/2)

Visualizing the sequence of tennis and strategies

Understanding the latent dangerous locations from the history of bike data

Support system for football players and trainers

Summary

- The potential benefits of reusing and analyzing massive amounts of data have been discussed by various stakeholders from diverse domains.
- However, it is difficult to learn the kinds of data that are related to our interests.
- We introduce our latest technologies for activating crossdisciplinary data exchange and collaboration by structuring the knowledge of data utilization using Data Jacket (DJ).

Thank you for your listening!