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Opportunities



Two Potential Categories of 
Applications

• Urban-scale Social Cyber-Physical Systems for Secure, 
Sustainable,  and Better Social Life
– Optimizing social services such as

• transportation / water supply and sewerage system / energy supply 
and consumption /  traffic accident prevention / snow removal / …

– Disaster management (preparedness, mitigation, response, and 
recovery)

– Terror prevention
• Data-driven Sciences: Paradigm Shift from “X” Science to 

“X” Informatics for varieties of “X”
– X: bio / biomedical / chemical / geo / brain / cosmological / 

meteorological / pharmaceutical / epidemiological / materials / 
…

• Cf. NSF’s focused 2 areas for big data applications
• Smart and connected communities
• Harnessing data for 21st Century Science and Engineering



Urban-scale Social Cyber-Physical 
Systems with Humans in the Loop

• Real-time monitoring and control of the situation through IoT
– weather, traffic & mobility, road condition, people’s behaviors, energy 

consumption, CO2, precipitation, earthquake, tsunami, epidemic, …
• Real-time assessment of the situation

– Quantitative assessment
– Geo-Visualization of states, events, 

and flows
– Identification of their anomalies

• Prediction of the future situation
– Data assimilation of simulation and 

observation
– Machine learning

• Decision Making and Action to the Physical World
– Based on real-rime assessment and/or prediction



Data-driven Sciences
• Forerunners

– Bio Informatics
– Biomedical Informatics

• Followers
– Materials Informatics

• (End-to-End) In-Silico-
Science：
– No physical transfer of

mass → Open Science  
→ Citizen Science

Bio-Bank,
High Throughput Experiment,
3D print

End-to-End In-Silico Science



JST CREST programs on Big Data

• 2013-2020
• Each winning project: 5.5 years
• CREST Program on Big Data Applications

– PO: Yuzuru Tanaka (Hokkaido Univ.)
– Collaboration between CS and/or Math researchers and domain 

science researchers is mandatory.
– For either creating a new societal and/or economic value or 

discovering new scientific knowledge

• CREST Program on Big Data Core-Technologies
– PO: Prof. Masaru Kitsuregawa (NII)



Design Policy of CREST Program on
“Big Data Applications”

• Designing a good portfolio to cover 
challenging big data applications.

• Choosing a flagship project from each area.
• Promoting cross-disciplinary synergy, 

especially among young researchers.
• Clarifying the fundamental common 

denominator technologies, and integrate 
them into an open science platform.



Portfolio of Domain Sciences
and Flagship Projects

Pharmacy: Drug Discovery

Meteorology: 30 min ahead 
Forecasting of Localized Severe Rain

Epidemiology: pandemic forecasting

Cosmology: Discovery of new 
Super Novae and 3D Mapmaking 
of the Dark Matter Distribution

Tsunami 
Disaster 
Prevention 
and 
Mitigation

Personalized/
Precision 
Medicine

Developmental
Biology: 
Automatic 
Digitization of 
Development
Processes
e-Agriculture:
Phenotyping

Literature-based
Knowledge 
Discovery



Fundamental Common Denominator 
Technologies

• Varieties of Data Science Algorithms: applicability and restrictions
• Literature-based knowledge discovery: from big data to big 

mechanism
• Data assimilation of real-time observation and physical-model 

based ensemble simulation for the high-precision real-time 
prediction of the near future
– Continuous system modeling (well studied) / discrete system modeling 

(not well studied yet)
• Exploratory visual analytics to cope with the heterogenous nature 

of available training data sets.
– Interactive segmentation of heterogenous data to sets of homogeneous 

data, and analysis of each of them 
– Definition, management, and execution of such analysis process scenarios.

• Integration Platform: Cyber Research Infrastructure
– Hands-on portals for 9 projects

• Ontology-based management of resources, analysis scenarios, users, 
and projects.



Advisory Board



Symposiums on Big Data Applications

• September Symposium (1day)
– 2 keynote speakers

• Michele Sebag in 2017
• Christos H. Papadimitriou in 2018

– progress report by each of 9 PIs
• January Symposium (2 days)

– 1 keynote speaker
• Dennis Tsichritzis in 2015
• Christos Faloutsos in 2018
• Stuart Kaffman in 2019?

– Each project session
• 1 invited speaker
• Progress report by PI and members 

• + Joint Symposium with CREST Program on Big Data Core 
Technologies (NSF-JST, DATAIA-JST)



My Involvement 
in Big Data projects (1)

• Biomedical Science: Personalized Medicine for cancer
– EU FP projects for integrated IT support of clinical trials on cancer

• FP6 Integrated Project ACGT (Advancing Clinico-Genomic Trials on Cancer) 
(02/2006 – 07/2010): 26 teams 

• FP7 Large-scale Integration Project p-medicine (personalized medicine) 
(02/2011 – 01/2015 ): 29 teams 

Exploratory Visual Analytics



My Involvement 
in Big Data projects (2)

• Social Science: Urban-scale Monitoring and Service Optimization
– MEXT initiative project on Social CPS (Cyber-Physical System) for 

Efficient Social Services (09/2012-03/2017)
• Project Consortium (NII (National Institute of Informatics), Hokkaido Univ., 

Osaka Univ., Kyushu Univ.)
• Hokkaido team focuses on smart snow removal.

• Material Science: Collaboration with Dr. Keisuke Takahashi at NIMS 
(National Institute for Materials Science）(2014- )

Exploratory Visual Analytics



Materials Informatics
• Current status: emerging period

– Computational (and/or experimental) materials 
science with the help of ML-based data analysis

• 2 major objectives:
(1) To replace DFT computation with ML for speed-up
(2) To optimally guide the exploration of the target 

space to decide which material to choose next for 
DFT computation or experiment

• Main targets: natural materials with modifications



ML for Speed-Up

x1, x2, ……, xn

DB or
simulation

y1, y2, .., ym
training 
data set

Estimation by
Machine Learning

Explanatory
variables

Objective 
variables

v1, v2, ……, vn p1, p2, .., pm

u1, u2, ……, un

Learn

F s.t. y=F(x)

Compute

F(u)

Replacing (n+m) variable simulations with n 
variable simulations and ML



What ML to learn? 
3 Major Goals

• Materials Discovery: 
Find the material with maximum performance 
– DFT to compute F : Structure → Performance
– ML (regression) to learn F as an explicit function
– Inverse Problem: arg max F(x)

• Measurement Analysis:
Identify the material structure from its measurement result 
– (Measurement Data) + Simulation Data: F*: Structure → Property
– ML (Deep Learning) to learn F*-1 as a computation mechanism

• F* should be bijective, otherwise Deep Learning does not converge.

– Evaluate F*-1 for a given measurement chart or image to identify its 
structure.

• Literature-based Knowledge Discovery
– Network of conditional or unconditional causality relations as a directed 

graph or a catalytic reaction network

experiments: years
simulations: hours, days
machine learning: seconds
(for candidates discovery)



High Speed Estimation of Lattice Constants

Exp:      months or years
Comp.: hours
ML: seconds

Machine Learning



To find good descriptors

Predicted bulk modulus against true bulk modulus with descriptors: 
(a) the number of bonds in each C atom and (b) the number of bonds in each C atom 
with density. Structure models of bond type in amorphous carbon are also shown.



Takahashi

8 undiscovered stable 2D materials with high 
magnetic moments

216 2D Materials Data + ML (4 discriptors)

2D Magnets
(Journal of Physics: Condensed Matter)

The structural models of AB2 
in top (a) and side (b) view 
and graphene based AB in 
top (c) and side (d) view

Prediction 254 2D Materials with High Magnetic Moment

Checking by DFT
TanakaMiyasato



Searching for hidden perovskite materials 
(ACS Photonics: Keisuke Takahashi, Lauren Takahashi, Itsuki

Miyazato, and Yuzuru Tanaka)
To find perovskite materials within the ideal band gap and formation energy ranges for 
solar cell applications
• 15,000 perovskite materials data for ML (random forest) to predict the band gap
• 18 physical descriptors are revealed to determine the band gap.
• 9,328 perovskite materials with potential for applications in solar cell materials are 

predicted.
• The selected Li and Na based perovskite materials within predicted 9,328 are 

evaluated with DFT.
• 11 undiscovered Li(Na) based perovskite materials are found.

Atomic model of perovskite materials, 
ABC2(C1,C2)D. Atomic color code; Blue:A,
Green:B, Yellow: C, Red:D.



Emerging MI: Progressive Exploratory 
Search: Bayesian Optimization

current
maximum

Next point to sample 
for maximizing the expected improvement 
PI(x), i.e., size of the green area
→ guiding experiment or DFT computation

Gaussian Process 
Regression with 3 
sample points

X: search space

To find the material with 
maximum performance

3 sample points

X



Bayesian Optimization
• No guarantee that the physics follows the 

Gaussian distribution assumption.
• Exploration may somehow finally reaches to a 

local maximal, not a global maximum.
• Question:

– Can this method find Nd2Fe14B, starting from SmCo5? 
– Probably not, since they follow different physics.
– How about Sm2(Co, FE, Cu, Zr)17, starting from 

SmCo5?
– ?



How to find a needle in a 
haystack?

In the 
neighbor 
of a found 
one

An experimentally 
discovered champion 
functional material 

its neighborhood as
an exploration space

Simulation / experiment 
data set as a learning 
data set 

Simulation / experiment data 
set to expand an exploration 
space through ML 

discovery of desired 
materials

discovery of desired 
materials

Brute 
force 
exhaustive 
filtering

Current Focus of 
Computational and/or 
Experimental 
materials Scientists



Challenges



3 Things to Consider

F s.t. y=F(x) (3) ML Algorithm

(1) Training 
data set

(2) Set of descriptors



(1) Training Data Set
• Heterogeneous (also observed in urban-scale 

traffic in different road links, and in chemo-
response of patients and tumors)
– Different groups follow different mathematical 

models.
– Appropriate segmentations are required before 

analysis!
• Size of each homogeneous data set

– Inorganic materials: 103～104

– Difficult to provide more than 105 data
• No more variations of structures and components
• Both DFT computations and experiments are time-

consuming

How to increase the size of the homogeneous training 
data set? Is it really necessary?



Once segmented to homogeneous 
systems, each follows a math model.  

ML is to find out a hidden physical order whose mathematical 
model is not known yet, and to give its approximate function.

• SVR works well to find a hidden physical order which 
follows a math model.
– Different from data sets in other research areas



(2) Set of Descriptors
• No systematic way to define an arbitrarily large set of 

descriptors
– cf.  Genome systematically provides genes, their expressions, 

and gene alterations as descriptors.
• A large training data set requires a large set of 

descriptors, 
• while a small training data set needs to use only a small 

set of good descriptors to avoid the curse of dimensions.
How to systematically define a large set of descriptors?
How to define a small set of good descriptors for a small 
set of training data to avoid the curse of dimensions?



103 104 105 106 107 108 109102

Big Data vs. Small Data
after segmented into homogeneous data sets 
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Description
Power
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D
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Medium Small Data

Medium Big Data



103 104 105 106 107 108 109102

(3) ML Algorithm

101

102

103

104

Poor
Description
Power

Curse of
Dimension

Small Data
(Regression)

Current Inorganic 
MI

Big Data
(Deep Learning)

D
escriptors

Training Data

Medium Small Data
(Regression)

Medium Big Data
(Regression + Boosting / 

Neural Network)
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Potential MI Scenarios to Come
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Medium Big Data
• Big Data, or Small Data?

– Organic materials may result in big data (≥ 106)
– Inorganic materials result in small data (≤ 104～105)

• Some people try to increase the data size.
– combinatorial design 
– organometallic materials whose skeletal polymers 

increase the variety.
• Systematic Definition of Descriptors

– some researchers focus on organometallic materials.  
• The SMILE representations of their skeletal polymers enable 

them to systematically define descriptors.



Medium Small Data
• Target:

– 103-104 homogeneous simulation data and/or HTE data
– Less than 101 governing well-designed descriptors
– Heterogeneous data consisting of those homogeneous 

ones.
• Method:

– First, segmentation
• What kind? → (new segmentation algorithm based on item-set mining)

– Then, regression
• SVR-based machine learning to reveal hidden orders as math 

functions

• Numerical solution to inverse problems



Medium Small Data:
Design Parameters as Descriptors

• Designers class of materials
– Artificially designed materials
– No more than 10 design parameters
– Data can be acquired through HTE or HTC
– # of materials in the class ＞103

– Simultaneous materials discovery for varieties of functions
• Design framework: combinatorial design

– Multilayered 2D materials
– scaffolding + modifiers

• Scaffolding: functional / nonfunctional
• modifiers to give functions
• Different scaffoldings define different classes.



(Scaffolding + Modifiers) Framework:
Candidates of Scaffolding (1)

• Carbon-based ones:

• 2D materials + layered structures
– Intralayer modifier
– Interlayer modifier

• Polymer nanocomposites/nanoparticle



(Scaffolding + Modifiers) Framework:
Candidates of Scaffolding (2)

• Nano pores 

• Crystal surface



(Scaffolding + Modifiers) Framework
(1) Modifiers

• Single atom
• Atom cluster

• Nano particle



Special focuses on red ones 
• Others: 

– DFT computation becomes difficult.
– No translational symmetry

• Biggest interest on
– Double layered 2D Materials with metallic atoms or 

clusters as interlayer modifiers
• For ML-based analysis, the scaffolding 2D material is fixed.

– Nano particles
• Design parameters can be well defined



Single atom between graphene layers

Van der Waals force

Properties of single atoms 
are well preserved
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Landscape of 
Materials Informatics

101
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Poor
Description
Power

Curse of
Dimension

Small Data
Metal Crystal

Big Data
e.g. Programmable DNA-based 

Synthetic Materials?D
escriptors

Learning Data

descriptors

design
param

eters

Medium Small Data
Artificially Designed 
Inorganic Materials

Program
 

codes

Medium Big Data
Organometallic Materials



Take Home Messages
• How to deal with the heterogeneity of data in practice?

– Exploratory visual analytics
– From description to design

• Implications both from the nature of inorganic materials 
and from ML

• Target: Designers classes of materials
– 103-104 DFT data and/or HTE data
– ≤ 10 governing well-designed descriptors

• Method: Segmentation → Regression

• Open Question
– What kinds of designers classes of materials can effectively 

exploit both DFT and ML for the exhaustive filtering of its whole 
search space?


