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Short Overview of research activities

Focus on complex output learning

How to learn a function from X to )V when Y: set of trees,( labeled) graphs, sequences,
functions .... ?

@ Multi-task learning: Multiple quantile regression

@ Functional-valued Regression: Infinite-task learning

@ Structured Output regression: Graph prediction in chemoinformatics

@ Zero-shot learning: Predict a class/complex object never seen in the training data
New challenges: make it fast and efficient, make it robust and reliable !
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Short Overview of research activities

How do we solve these problems? solve an easier surrogate problem

(1) Transform your outputs and solve an easier problem in a well chosen output feature

space
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Short Overview of research activities

How do we solve these problems?

(2) Come back to the original output space by solving a pre-image problem
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Focus on Structured Output Prediction with Abstention

Outline

e Focus on Structured Output Prediction with Abstention
@ Learning framework
@ Empirical results
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Focus on Structured Output Prediction with Abstention

Learning to label a structure with abstention

@ Setup : we want to predict the labels of a known target graph structure (encoded by
a directed graph).

TripAdvisor review = sentence level opinion annotations
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Focus on Structured Output Prediction with Abstention

Problem

@ Problem: Error at a node penalizes the prediction of descendants.
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Focus on Structured Output Prediction with Abstention

Problem

@ Problem: Error at a node penalizes the prediction of descendants.
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Focus on Structured Output Prediction with Abstention

Mathematical setup

@ X an input sample space.
@ Y the subset of {0, 119 that contains all possible legal labelings of an output
structure G.

Goal of Structured Output Learning with Abstention: learn a pair of functions (h, r) from
X to YA < {0,1}9 x {0,1}? where a predictor h predicts the labels of G and an
abstention function r chooses on which components of G to abstain from predicting a
label.

@ V* c {0,1,a}"is the set of legal labelings with abstention where a denotes the
abstention label,

@ Abstention-aware predictive model " : X — }* defined by :
0T =160, 1 (),
(%) = Thug=1Tr0,=1 + @lrw 0.
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Focus on Structured Output Prediction with Abstention

Learning setup

@ (X, Yi)i=1,....n ~ D are ni.i.d. samples from a distribution P over X x Y.

@ Suppose that we have access to an abstention aware loss A, : Y7F x Yy — R*
then the risk of an abstention aware predictor is:

R(h,r) =Exy~p Aa(h(x), r(x),y).
Where A, can be rewritten under the general form :
Da(h(x), r(x),¥) = (Ywa(y), Ca(h(x), r(x))),

With C : R — RY a bounded linear operator and 5 : Y — RP, 4us : ¥ — RY output
embeddings.
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Focus on Structured Output Prediction with Abstention

Abstention-aware H-loss (Ha-loss)

a(h(X) r(X y) - ZCA’ {fh’ ’7"_ )}

=1 _/_’
abstention cost

+Cacil gy ey T O sy iy i)

abstention regret misclassification cost

This loss writes as a inner product (¥wa(y), Cva(h(x), r(x))).
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Focus on Structured Output Prediction with Abstention Learning framework

Square surrogate framework

True risk:

R(h,r) = Ex (Ey\x¥ua(y), Cha(h(x), r(x))).

Procedure :
@ Solve a surrogate risk minimization problem :

[¢wa(y) — 9(X)|°.

surrogate risk

min Ey
gEH

@ Solve a pre-image problem

(h(x),7(x)) = argmin _(§(x), Ceba(yn, ¥:)),

Vhoyr)eVHA
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Focus on Structured Output Prediction with Abstention Learning framework

Square surrogate framework: intuition
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Focus on Structured Output Prediction with Abstention Learning framework

Square surrogate framework: intuition
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Focus on Structured Output Prediction with Abstention Learning framework

Square surrogate framework: intuition

Replaced by

Ea:,yN’DAa(h(x)a ’I‘(CL’),y EE—— Em,yN’DH@bwa(y) - g(CB)

Input sample
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Focus on Structured Output Prediction with Abstention Learning framework

Square surrogate framework: intuition
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Focus on Structured Output Prediction with Abstention Learning framework

Surrogate risk minimization

Goal :
* H 2
g = gr’rg?r_}Ex,yH?/}wa(}/) —9()|".
surrogate risk

Based on an empirical sample (x;, ¥i)ie1,...n:

I R
g=min >~ [Ywa(y) — 900)P +A2A(g),
i=1

Multivariate regression problem
‘H: operator valued kernel, vector random forest, kNN, . ..
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Learning guarantees

Theorem

Based on the previous notations, the optimal predictor (h*, r*) is defined as:

(h"(x),r*(x)) = argmin (Ca(yh, ¥r), Eyjxtbwa(y))-
(Yhyr)€VH-A

The excess risk of an abstention aware predictor (h, ?) defined from §:
R(h,}) — R(h*, r*) is linked to the estimation error of the regression step.

R(h, ) = R(h*, r*) < 201\/£(8) — L(Eyxtowal(y)),

where L(9) = Ex,y|

Ywa(y) = g(X)|I%, and ¢ = ||Cl| max,, , cym.n [[va(yn, ¥r)llze-
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Focus on Structured Output Prediction with Abstention Learning framework

Pre-image for hierarchical structures with abstention
Step 2 : Solve a pre-image problem

(h(x),}(x)) = argmin (g(x), Cta(yn, ¥i)),

(Vnoyr)eYHAR

Problem: search over the set -7 which is a subset of {0,1}? x {0, 1}¢ under the
Yh

constraint A | y, | <b.
c

Canonical form :

(h(x), #(x)) = arg min[y} ¥, c"IM" )y

(Yh>yr)
Yn
s.t. Acanonical yr < bcanonical,
c

(.yfh.yf) € {071}d X {071}d7

Where Acanonical, Deanonical €Ncode the constraints of A, b and the one of Y7
In general — NP-Hard
There exists polynomial time good initialization technigues.
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Focus on Structured Output Prediction with Abstention Empirical results

Experimental Setting

Dataset : 100
Input: TripAdvisor reviews // \\(‘j o0 g)
annotated at the sentence level SRR
from [Marcheggiani et al. 2014] Location ({ Food (0 Rooms (@)  Aspects 5322
We use the dense InferSent /}\ /l\ /\\ B2 <~ é
[Conneau et al. 2017] ( feature § H “i

representation for handling input OO0 00O O 0O O rowie
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F on Structured Output Prediction with Abstention Empirical results

Experiments (subset): Joint Aspect and polarity prediction with
abstention

Parameterization: ¢; = cai = KaCi, Ca,i = Ka,Ci.
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Conclusion

Outline

Q Conclusion
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Conclusion

Conclusion and future works

@ SOLA extends two families of approaches: learning with abstention and
least-squares surrogate structured prediction.

@ Beyond ridge regression, any vector-valued regression is eligible (including deep
learning).

@ Allows to build a robust representation for star rating in a pipeline framework.

@ Beyond the target problem: develop general approaches to efficiently provide
robust and reliable structured output prediction, whatever the underlying predictor
architecture.

@ Other ways to define r(x): Bayesian approaches
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Conclusion
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