MissingBigData Missing data in the big data era

6

Gaël Varoquaux[†], Nicolas Prost[†]* Julie Josse*, Erwan Scornet* * CMAP, École Polytechnique † Inria

101000000011:

01110101101000000011

101000000011

101001110101101000000011

11010011101011010000000111

1010000000111

Missing Big Data Missing data in the big data era

Context

11010011101011010000000111

10000000111

Gaël Varoquaux[†], Nicolas Prost[†]* Julie Josse*, Erwan Scornet*

★ CMAP, École Polytechnique

2 Random forests with missing values

011.01000000011

† Inria

1000000011:

00111010110 1000000011

 Context "big data" More samples mplesson Missing data is central to " Observational 100111110101111010011101011010000000111data **MissingBigData**

1 Context: big data in health and social sciences

More and more missing data due to:

- high dimensionality (one feature may be missing)
- difficulty of fine control on the acquisition process

Causal conclusions from analysis challenging:

- observational data (as opposed to experiments)
- missing data induces selection biases

New data sources challenge missing-data methodology: high-dimensional observational uncontrolled confounds

1 Motivating data in health

Traumabase:			15000 patients/ 250 var/ 15 hospitals					
Center	Age	Sex	Weight	Height	BMI	Τ°	Lactates	Glasgow
Beaujon	54	m	85	NR	NR	35.6	NA	12
Lille	33	m	80	1.8	24.69	36.5	4.8	15
Pitie	26	m	NR	NR	NR	36	3.9	3
Beaujon	63	m	80	1.8	24.69	36.7	1.66	15
Pitie	30	W	NR	NR	NR	36.6	NM	15

- missing: Not Recorded, Made, Applicable, etc.

- predict the Glasgow score, start of a transfusion
- study the effect of a treatment on survival

1 Motivating data in health

Traumabase:			15000	patients	s/ 250	var/	15 hospi	tals
Center	Age	Sex	Weight	Height	BMI	Τ°	Lactates	Glasgow
Beaujon	54	m	85	NR	NR	35.6	NA	12
Lille	33	m	80	1.8	24.69	36.5	4.8	15
Pitie	26	m	NR	NR	NR	36	3.9	3
Beaujon	63	m	80	1.8	24.69	36.7	1.66	15
Pitie	30	W	NR	NR	NR	36.6	NM	15

- missing: Not Recorded, Made, Applicable, etc.

- predict the Glasgow score, start of a transfusion
- study the effect of a treatment on survival

UK Biobank: prospective epidemiology

- 1 Million patients of a normal aging population
- 10% have medical imaging data
- observational data to study risk factors

1 State of the art to handle missing values

Single imputation: complete the data

 \Rightarrow Need to reflect the uncertainty in the analyses

Multiple imputation: generate different imputed data and apply the analysis on each imputed data ⇒ Impute by approximating the joint distribution

1 State of the art to handle missing values

Single imputation: complete the data

 \Rightarrow Need to reflect the uncertainty in the analyses

Multiple imputation: generate different imputed data and apply the analysis on each imputed data ⇒ Impute by approximating the joint distribution

Solutions: SVD (+bootstrap) [Josse... 2016]

Benefits: low-rank [Udell, 2017]

Drawbacks: struggle with complex relationships Nonparametric Bayes

flexible do not scale

Age	Height	Τ°	Glasgow score
26	1.84	36.0	3
16	1.92	37.5	4
54	1.6	35.6	10
33	1.69	36.0	5
63	1.8	36.7	12
33	1.73	36.5	15

missing at random everywhere MCAR Easily unbiased

Age	Height	T°	Glasgow score
26	NA	36.0	3
NA	1.92	37.5	4
54	1.6	35.6	10
33	1.69	NA	5
NA	1.8	36.7	12
33	1.73	NA	15

- missing at random everywhere
- missing at random on certain variables MCAR (Missingness on X_1) $\perp X_1 | X_{i \neq 1}$

 \Rightarrow max likelihood imputation unbiased

Age	Height	Τ°	Glasgow score
26	1.84	36.0	3
16	1.92	NA	4
54	1.6	35.6	10
33	1.69	NA	5
63	1.8	36.7	12
33	1.73	NA	15

MissingBigData

MCAR

- missing at random everywhere
- missing at random on certain variables MCAR (Missingness on X_1) $\perp X_1 | X_{i \neq 1}$ \Rightarrow max likelihood imputation unbiased
- missingness not independent of data MNAR non-ignorable pattern

Age	Height	Τ°	Glasgow score
26	1.84	NA	← 3
16	1.92	NA	← 4
54	1.6	35.6	10
33	1.69	NA	← 5
63	1.8	36.7	12
33	1.73	36.5	15

MissingBigData

MCAR

1 Missing not at random and causal interpretation

Missingness depends on the underlying value (eg income)

- problem: selection bias
- solution: model for the missing values mechanism
- state of the art: only 1 variable with missing values

Graphical models for missing values

[Pearl 2018]

- Explicit distribution (X, R_X)
- Ex: Y years of work experience, I income
- $Y
 ightarrow I
 ightarrow R_I$ but P(Y|I) may be recovered

 \Rightarrow Powerful models

to capture interactions between variables

1 Objectives of the MissingBigData project

Broad models: avoid underfitting but also scalable

Modeling the dependency structure in missingness across covariates (not at random)

Control possible biases

(non ignorable missingness)

Enable statistical analysis \Rightarrow Combining predictive models with causal inference

1 Ongoing: causal conclusions with missing values

Causal conclusions:

Y outcome, X covariates, W treatment 0 or 1 Average Treatment Effect $\tau = E[Y_i(1) - Y_i(0)]$

- experimental design: $ar{Y}_1 - ar{Y}_0$

- observational data: adjust for the covariate Unconfoundness: $(Y_i \perp W_i | X_i)$

Inverse probability weighting — "Doubly robusts"

Estimates weights: $e(x) = P(W_i = 1 | X = x)$ Average Treatment Effect $\hat{\tau} = \frac{1}{n} \sum_i \left(\frac{W_i Y_i}{\hat{e}(X_i)} - \frac{(1-W_i)Y_i}{1-\hat{e}(X_i)} \right)$

 \Rightarrow Random Forests with missing values

2 Random forests with missing values

2 Random forest: constructing the trees

• A split point s_1 is selected at each iteration.

2 Random forest: constructing the trees

• A split point s_1 is selected at each iteration.

■ The average of *Y* in each leaf is the prediction.

 \Rightarrow How to split?

2 How to split? Two classic strategies

"Classic" CART Conditional trees [Hothorn... 2006]

Exhaustive search Variable choice: Impurity of a node: $T(X_i) = \sum X_i^j Y_i$ $\mathcal{I} = \sum (Y_i - \overline{Y})^2$ Threshold choice: impurity Splitting criterion: Splitting criterion: $\mathcal{C}(X_i) = \mathcal{I} - \mathcal{I}_i^{best} - \mathcal{I}_P^{best}$ $\mathcal{C}(X_i) \propto T(X_i)$

With missing values: sums over available points. MissingBigData

Balanced setting $Y = X_1 + X_2 + \varepsilon$. The ratio $C(X_1)/C(X_2)$ should be close to 1.

	C	CART								
e missing	75%-	1.02	0.98	1	0.99					
	50%-	1.01	1.02	1.01	1					
ercentag	25% [.]	1	0.99	1.01	1					
Å	00%	0.99	1	1	1					
	N=20 N=50 N=200 N=500 Sample size									

Missing at random on all variables

Balanced setting $Y = X_1 + X_2 + \varepsilon$. The ratio $C(X_1)/C(X_2)$ should be close to 1.

Missing at random on X_1

Balanced setting $Y = X_1 + X_2 + \varepsilon$. The ratio $C(X_1)/C(X_2)$ should be close to 1.

Missing at random on X_1

Balanced setting $Y = X_1 + X_2 + \varepsilon$. The ratio $C(X_1)/C(X_2)$ should be close to 1.

Missing on X_1 depending on the value of Y

Balanced setting $Y = X_1 + X_2 + \varepsilon$. The ratio $C(X_1)/C(X_2)$ should be close to 1.

Missing on X_1 depending on the value of Y \Rightarrow Conditional trees show negligible bias. MissingBigData

Same setting: $Y = X_1 + X_2 + \varepsilon$.

Metric: systematic bias on the prediction of Y.

Same setting: $Y = X_1 + X_2 + \varepsilon$.

Metric: systematic bias on the prediction of Y.

(CART			CTREE						
75% [.] තු	0	0.01	0	0	75% [.] ס	0.22	0.14	0.05	0.01	
e missin 20%.	0	0.01	0	-0.01	e missin	0.22	0.16	0.05	0.01	
ercentaç .%57	0.01	0.01	0	0	ercentaç	0.21	0.14	0.04	0.01	
م ـ 00% [.]	0	0.01	0	0	₽ 00%	0.22	0.15	0.04	0.02	
	N=20	N=50 Sampl	N=200 e size	N=500		N=20	N=50 Samp	N=200 le size	N=500	

Missing at random on all variables

Same setting: $Y = X_1 + X_2 + \varepsilon$.

Metric: systematic bias on the prediction of Y.

CART					(CTREE			
75% [.] ס	-0.03	-0.02	-0.01	-0.01	75% [.] ס	0.16	0.11	0.02	0.01
le missin 20%.	-0.01	0	0	0	e missin	0.16	0.14	0.05	0.03
ercentag .%57	0.01	0.02	0	0	ercentaç	0.17	0.16	0.05	0.02
₽ 00% [.]	0.02	-0.01	0	0	₽ 00%	0.21	0.16	0.05	0.01
	N=20	N=50 Sampl	N=200 e size	N=500		N=20	N=50 Samp	N=200 le size	N=500

Missing at random on X_1

Same setting: $Y = X_1 + X_2 + \varepsilon$.

Metric: systematic bias on the prediction of Y.

(CART		CTREE							
75% [.] වු	0	0.02	0.02	0.02	75% [.] ס	0.12	0.06	0	-0.01	
le missin 20%.	0.02	0.07	0.07	0.07	e missin	0.2	0.15	0.05	0.03	
ercentag .%57	0.04	0.03	0.06	0.06	ercentaç	0.22	0.17	0.08	0.06	
⊡. 00% [.]	0.02	0	0	0	₽ 00%	0.2	0.15	0.04	0.02	
	N=20	N=50 Sampl	N=200 e size	N=500		N=20	N=50 Samp	N=200 e size	N=500	

Missing on X_1 depending on the value of Y

Inference \neq prediction.

- Conditional trees correct the bias in inference of parameters.
- CART is more robust in prediction than in inference.
- Prediction seems easier and more useful to us.

MissingBigData

Missing data is ubiquitus in big data
 Dependence between missingness & effect breaks analysis
 Models that capture dependences

 Compensating biases ______
 Missingness can appear as selection bias: causal literature
 Modeling of missingness to correct causal interpretations
 Inverse probability weighting: prediction problem

Random forests with missing data _____ Uncontrolled variance in split criteria biases selections Prediction is more robust

3 References I

- T. Hothorn, K. Hornik, and A. Zeileis. Unbiased recursive partitioning: A conditional inference framework. 2006.
- J. Josse, F. Husson, and V. Audigier. Mimca: Multiple imputation for categorical variables with multiple correspondence analysis. *Statistics and Computing*, 27: 501–518, 2016.
- K. Mohan and J. Pearl. Graphical models for processing missing data. *arXiv:1801.03583*, 2018.
- M. Udell and A. Townsend. Nice latent variable models have log-rank. *arXiv:1705.07474*, 2017.