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Algorithmic Fairness : regression with

demographic parity constraints

Evgenii Chzhen
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Motivating examples: Google translate

Source https://www.reddit.com/r/europe/comments/m9uphb/hungarian_has_no_gendered_pronouns_so_google/

https://www.reddit.com/r/europe/comments/m9uphb/hungarian_has_no_gendered_pronouns_so_google/
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Motivating examples: Google translate

Source https://kotiliesi.fi/ihmiset-ja-ilmiot/ilmiot/miksi-google-kaantajan-mukaan-mies-johtaa-ja-mies-tiskaa/

https://kotiliesi.fi/ihmiset-ja-ilmiot/ilmiot/miksi-google-kaantajan-mukaan-mies-johtaa-ja-mies-tiskaa/
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Motivating examples: Twitter cropping

Fact: Twitter automatically crops large images in order to fit the size of
an average mobile screen.

Original Cropped
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Motivating examples: Twitter cropping

Fact: Twitter automatically crops large images in order to fit the size of
an average mobile screen.
Question: How will Twitter crop these two images??
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Motivating examples: Twitter cropping

Fact: Twitter automatically crops large images in order to fit the size of
an average mobile screen.

Twitter’s response: (https://blog.twitter.com/en_us/topics/product/2020/transparency-image-cropping.html)

https://blog.twitter.com/en_us/topics/product/2020/transparency-image-cropping.html
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Motivating examples: Twitter cropping

Source:

https://blog.twitter.com/engineering/en_us/topics/insights/2021/sharing-learnings-about-our-image-cropping-algorithm

More details in associated paper (Yee, Tantipongpipat, and Mishra, 2021)

https://blog.twitter.com/engineering/en_us/topics/insights/2021/sharing-learnings-about-our-image-cropping-algorithm
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Today’s plan

1. Individual fairness

2. Group fairness

2.1 Definitions / vocabulary for binary classification

2.2 Types of approaches

3. Regression with demographic parity constraint
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Individual fairness paradigms

“treat like cases as like” (≤ Aristotel)
“Ensure that similar individuals are treated similarly” (Dwork et al., 2012)

Example. Consider binary classification problem, where observations are
of the form (x, y) ∈ X × {0, 1}. Individual fairness always considers
randomized predictions f : X → ∆({0, 1})

1. Similarity of predictions: D : ∆({0, 1})×∆({0, 1})→ R+

2. Similarity of individuals: d : X × X → R+

A prediction f : X → ∆({0, 1}) is called perfectly (D, d)-individually fair if
∀x1,x2 ∈ X

D(f(x1), f(x2)) ≤ d(x1,x2)

A prediction f : X → ∆({0, 1}) is called approximately
(D, d, α, γ)-individually fair if

P(X1,X2) (D(f(X1), f(X2)) > d(X1,X2) + γ) ≤ α

where X1,X2 are independent copies of X (Rothblum and Yona, 2018).
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Group fairness paradigm

(feature︸ ︷︷ ︸
X

, sensitive attribute︸ ︷︷ ︸
S

, label︸ ︷︷ ︸
Y

) ∼ P on X × S × Y

Predictions: f : Z → Y
I Fairness through awareness: Z = X × S (disparate treatment)
I Fairness through UNawareness: Z = X (legal reasons: regulations)

Risk: f 7→ R(f)
I classification: R(f) = P(Y 6= f(Z))
I regression: R(f) = E(Y − f(Z))2

Fairness criteria – dichotomy of prediction functions: which functions
we call fair? There are a lot of definitions.

Connections of ML fairness notions with political philosophy (Heidari et al., 2019)
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Popular definitions of fair classifiers

I Demographic Parity (DP) (Calders, Kamiran, and Pechenizkiy, 2009)

P(f(Z) = 1 | S = 0) = P(f(Z) = 1 | S = 1)

1. Prediction rate is the same for two groups
2. Random variable f(Z) is independent from S
3. DP (not differential privacy!) cares only about X|S.
4. Constant predictions satisfy DP

I Equalized Odds (Hardt, Price, and Srebro, 2016)

P(f(Z) = y | Y = y, S = 0) = P(f(Z) = y | Y = y, S = 1) ∀y ∈ {0, 1}
1. Equal True Positive and True Negative rates
2. Requires more knowledge about the distribution
3. Constant predictions satisfy Equalized Odds
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Popular definitions of fair classifiers

I Equal Opportunity (Hardt, Price, and Srebro, 2016)

P(f(Z) = 1 | Y = 1, S = 0) = P(f(Z) = 1 | Y = 1, S = 1)

1. Equal True Positive rates
2. If a person Z is qualified (Y = 1) then positive prediction (f(Z) = 1) is

given with the same probability for any sensitive attribute

I Test fairness (Chouldechova, 2017)

P(Y = 1 | S = 0, f(Z) = 1) = P(Y = 1 | S = 1, f(Z) = 1)

1. Y independent from S conditionally on f(Z) = 1.
2. Closely related to per-group calibration.
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Global view on group fairness constraints

Most of the definitions of fairness fall inside or try to reflect only 3 criteria

1. f(Z) ⊥⊥ S - independence (DP, Statistical Parity)

2. (f(Z) ⊥⊥ S) | Y - separation (Equal Odds, Equal Opportunity)

3. (Y ⊥⊥ S) | f(Z) - sufficiency (Test fairness)

N.B. Sometimes we consider a score function f(Z) ∈ [0, 1]. Above notions
applied in this case ensure that any threshold will result in fair
classification : incurs higher drop in accuracy; used in regression.

Taken from Chapter 2 of (Barocas, Hardt, and Narayanan, 2019)
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Impossibilities for score functions

1. f(Z) ⊥⊥ S - independence (DP, Statistical Parity)

2. (f(Z) ⊥⊥ S) | Y - separation (Equal Odds, Equal Opportunity)

3. (Y ⊥⊥ S) | f(Z) - sufficiency (Test fairness)

I If S and Y are not independent, then sufficiency and independence
cannot both hold.

I If Y ∈ {0, 1}, S and Y are not independent, f(Z) is not independent
from Y , then independence and separation cannot both hold.

I If S and Y are not independent, and P(Y = 1) ∈ (0, 1), then
separation and sufficiency cannot both hold.

A fact: famous example of COMPAS nearly satisfied sufficiency, but failed to

satisfy separation. Due to the latter propublica published an article that

extremely influenced the field of algorithmic fairness (Chouldechova, 2017).

Taken from Chapter 2 of (Barocas, Hardt, and Narayanan, 2019)
propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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Three (rough) types of methods: pre-processing

Pre-processing – Fair representation
Find a mapping Z 7→ ϕ̂(Z) such that

ϕ̂(Z) ⊥⊥ S

then use any method on the representation.

A guarantee on finite sample can look like

KS
(

Law(ϕ̂(Z) | S = 0,data),Law(ϕ̂(Z) | S = 1,data)
)

is small

Typically, (unsupervised) optimal fair representation is defined as

ϕ∗ ∈ arg min {E[d(X, ϕ(Z))] : ϕ(Z) ⊥⊥ S} .
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Three (rough) types of methods: in-processing

In-processing (Agarwal et al., 2018; Donini et al., 2018)

f∗F ∈ arg min
f∈F

{R(f) : f(Z) ⊥⊥ S}

In-processing type method: Given data (X1, S1, Y1), . . . , (Xn, Sn, Yn)

build an estimator f̂ as a solution

min
f∈F

{
R̂(f) + λ0 · Ωcompl(f) + λ1 · Ωfairness(f)

}

1 Often methods with good guarantees are not tractable
2 Often tractable methods are not supported by guarantees

N.B. There might be an issue of existence of non-trivial solutions,
especially if Z = X. For instance if F is the family of linear classifiers
(linear regression), and X | S are Gaussians we can end-up with
constant f∗F , even if the underlying data comes from linear model.
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Three (rough) types of methods: post-processing

Post-processing: given data, base algorithm h, find a transformation

h 7→ T̂ (h) ,

so that T̂ (h) satisfies your fairness constraint.

Typical algorithm construction is based on the connection between

h∗fair ∈ arg min
h:Z→Y

{R(h) : h is fair} and h∗Bayes ∈ arg min
h:Z→Y

R(h)

In particular, often you can show that

h∗fair = T ∗(h∗Bayes) ,

treat the base algorithm h as if it were a Bayes and estimate T ∗
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Regression with Demographic Parity

joint works with C. Denis, M. Hebiri, L. Oneto, M. Pontil, and N. Schreuder
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Regression + Demographic Parity

(feature︸ ︷︷ ︸
X

, sensitive attribute︸ ︷︷ ︸
S

, signal︸ ︷︷ ︸
Y

) ∼ P on Rd × S︸︷︷︸
={1,...,K}

×R

Prediction: f : Rd × S → R

Risk: R(f) = E(f∗(X, S)− f(X, S))2 where f∗ = E[Y |X, S]

Demographic Parity fairness

f(X, S) ⊥⊥ S

Optimal fair prediction:

f∗0 ∈ arg min {R(f) : f(X, S) ⊥⊥ S}
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An illustration and main assumption

f(X, S) ⊥⊥ S

Unfair prediction

s = 1
s = 2

Fair prediction

s = 1
s = 2

Assumption (A)

The group-wise prediction distributions Law(f∗(X, S) | S = s) have finite
second moment and are non-atomic for any s in S.
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Main insight

Optimal fair: f∗0 ∈ arg min
f :Rd×S→R

{R(f) : f(X, S) ⊥⊥ S}

Bayes optimal: f∗ ∈ arg min
f :Rd×S→R

R(f)

Question: is there a link between f∗0 and f∗?

Theorem (informal with S = {1, 2})
Set ws = P(S=s). Let Assumption (A) be satisfied, then

Law(f∗0 (X, S)) = arg min
ν∈P2(R)

∑
s∈S

wsW
2
2

(
Law(f∗(X, S) | S = s), ν

)
︸ ︷︷ ︸

Wasserstein barycenter problem

,

f∗0 (x, 1) = w1f
∗(x, 1) + w2T

∗
1→2 ◦ f∗(x, 1), ∀x ∈ Rd ,

T ∗1→2 – optimal transport map from Law(f∗ | S = 1) to Law(f∗ | S = 2).

(C. et al., 2020; Le Gouic, Loubes, and Rigollet, 2020)
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Interpretation for S = {1, 2}

Fair optimal: f∗0 (x, 1) = w1f
∗(x, 1) + w2F

−1
f∗|S=2 ◦ Ff∗|S=1 ◦ f∗(x, 1)

f∗(x, 1) f∗(x̄, 2)

Fair optimal prediction f ∗0 with w1 = 2/5 and w2 = 3/5

Law of f∗|S=1

Law of f∗|S=2

f∗(x, 1) f∗0 (x, 1)=f∗0 (x̄, 2) f∗(x̄, 2)

Law of f∗|S=1

Law of f∗|S=2

Law of f∗0
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Generic post-processing estimator (S = {1, 2})

Fair optimal: f∗0 (x, 1) = w1f
∗(x, 1) + w2T

∗
1→2 ◦ f∗(x, 1)

I Base estimator: f̂ : Rd × {1, 2} → R trained independently from the
following data.

I Unlabeled data: ∀s ∈ S we observe Xs
1, . . . ,X

s
Ns

i.i.d.∼ PX|S=s

Meta algo: 1. estimate ws = P(S = s)

2. estimate transport maps T ∗1→2 and T ∗2→1

using unlabeled data and base estimator

Put together: 3. f̂0(x, 1) = ŵ1f̂(x, 1) + ŵ2T̂1→2 ◦ f̂(x, 1)
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22/32

Theoretical guarantees

Theorem (informal)

For any joint distribution P of (X, S, Y ), any base estimator f̂ it holds that

E

[
sup
t∈R

∣∣∣P(f̂0(X, S) ≤ t|S=1,D)−P(f̂0(X, S) ≤ t|S=2,D)
∣∣∣] . 1√

N1 ∧N2

Under additional assumptions on P we have

E‖f̂0 − f∗0 ‖1 . E‖f̂ − f∗‖1︸ ︷︷ ︸
quality of base estimator

∨ ∑
s∈S

psN
−1/2
s︸ ︷︷ ︸

transport estimation

(C. et al., 2020)

Additional assumptions: (f∗(X, S) | S = s) admits density which is upper
and lower bounded (leading constant for the risk rate depends on this
upper/lower bound).

N1 and N2 – number of unlabeled samples from PX|S=1 and PX|S=2
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How to measure unfairness ?

Demographic Parity: f(X, S) ⊥⊥ S

I Problem: too stiff — either fair or unfair.

I Question: how to quantify unfairness i.e., violation of DP?

I Question: how to trade accuracy for fairness?

Popular measure is based on KS distance (Agarwal, Dudik, and Wu, 2019;

Oneto, Donini, and Pontil, 2019)

UKS(f) :=
∑
s∈S

KS (Law(f(X, S) | S = s),Law(f(X, S)))

We consider: U(f) = min
ν

∑
s∈S

wsW
2
2(Law(f(X, S)|S = s), ν)

From previous result: R(f∗0 ) = U(f∗)
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Improving unfairness oracles

α-Relative Improvement f∗α ∈ arg min
{
R(f) : U(f) ≤ αU(f∗)

}

I f∗α – 1/α times fairer than f∗.

I f∗0 – optimal DP fair prediction.

I f∗1 ≡ f∗ – Bayes optimal prediction.

Theorem

Under Assumption (A), for all α ∈ [0, 1] it holds that

f∗α ≡
√
αf∗1 + (1−√α)f∗0

α-RI ≡ √α · Bayes optimal + (1−√α) · Fair optimal

(C. and Schreuder, 2020)

N.B. We can use previous algorithm to estimate f∗0 and any standard
algorithm for estimation of f∗
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Idea of the proof

Goal: min
f :Z→R

{
K∑

s=1

wsE[(f(X, S)− f∗(X, S))2 | S = s] : U(f) ≤ αU(f∗)

}

LB:
K∑

s=1

wsW
2
2 (Law(f(X, S)|S = s),Law(f∗(X, S)|S = s))

New problem

min
b∈PK2 (R)

{
K∑

s=1

wsW
2
2 (bs, as) :

K∑
s=1

wsW
2
2(bs, Cb) ≤ α

K∑
s=1

wsW
2
2(as, Ca)

}

a1

b1

a2

b2

a3

b3

Geometric lemma with α = 0.75

Ca

1−√α

√
α

a1

b1

a2

b2

a3

b3

Geometric lemma with α = 0.5

Ca

1−√α

√
α

a1

b1

a2

b2

a3

b3

Geometric lemma with α = 0.25

Ca

1−√α

√
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Risk/fairness trade-off

α-Relative Improvement f∗α ∈ arg min
{
R(f) : U(f) ≤ αU(f∗)

}
Proposition

Under Assumption (A), for all α ∈ [0, 1] it holds that

R(f∗α) = (1−√α)2 U(f∗) and U(f∗α) = α U(f∗)

(C. and Schreuder, 2020)

0 0.25 0.5 0.75 1

α

R
(f
∗ α)

high U(f∗)

moderate U(f∗)

low U(f∗)

U(
f
∗ α)

Risk and unfairness of oracle α-relative improvements (α-RI)
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Risk/fairness trade-off

α-Relative Improvement f∗α ∈ arg min
{
R(f) : U(f) ≤ αU(f∗)

}
Proposition

Under Assumption (A), for all α ∈ [0, 1] it holds that

R(f∗α) = (1−√α)2 U(f∗) and U(f∗α) = α U(f∗)

(C. and Schreuder, 2020)
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Pareto efficiency

I Multi-objective optimization: minf :Z→R

(
U(f),R(f)

)
.

I Each prediction f defines a point (U(f),R(f)).

I f is dominated by f ′ iff R(f ′) ≤ R(f) and U(f ′) ≤ U(f).
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Minimax statistical framework

Data: (X1, S1, Y1), . . . , (Xn, Sn, Yn)
i.i.d.∼ P(f∗,θ), (f∗,θ) ∈ F ×Θ

Given α ∈ [0, 1] and t > 0, the goal of the statistician is to construct an

estimator f̂ , which simultaneously satisfies

1. Uniform fairness guarantee:

∀(f∗,θ) ∈ F ×Θ P(f∗,θ)

(
U(f̂) ≤ αU(f∗)

)
≥ 1− t ,

2. Uniform risk guarantee:

∀(f∗,θ) ∈ F ×Θ P(f∗,θ)

(
R(f̂) ≤ rn,α,f∗(F ,Θ, t)

)
≥ 1− t .
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Problem-dependent lower bound

For t ∈ (0, 1), let δn(F ,Θ, t) be a sequence that verifies

inf
f̂

sup
(f∗,θ)∈F×Θ

P(f∗,θ)

(
R(f̂) ≥ δn(F ,Θ, t)

)
≥ t

Theorem

Any estimator f̂ satisfying

inf
(f∗,θ)∈F×Θ

P(f∗,θ)

(
U(f̂) ≤ αU(f∗)

)
≥ 1− t′

verifies

sup
f∗∈F
θ∈Θ

P(f∗,θ)

R1/2(f̂) ≥ δ1/2
n (F ,Θ, t) ∨ (1−√α)U1/2(f∗)︸ ︷︷ ︸

=R1/2(f∗
α)

 ≥ t ∧ (1− t′)
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Conclusions

1. Individual fairness – predict with Lipschitz functions

D(f(x), f(x′)) ≤ d(x,x′)

2. Group fairness – enforce some independence criterion

f(Z) ⊥⊥ S, (f(Z) ⊥⊥ S) | Y, (Y ⊥⊥ S) | f(Z)

3. Regression with demographic parity (f(Z) ⊥⊥ S) can be characterized
by Wasserstein barycenter problem

R(f∗0 ) = U(f∗)

4. Risk/fairness trade-off can be characterized explicitly for introduced
notion of unfairness
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Thank you for your attention
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Questions?
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