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Motivating examples: Google translate

ONPEAENUTL A3bIK  BEHFEPCKWA  AHTJIMACKMA  OPAHLIY3CKUV

0 szép. O okos. O olvas. O mosogat. O épit. O varr. 0 tanit. § fé6z.
kutat. O gyereket nevel. § zenél. G takarité. O politikus. 6 sok pénzt
keres. § siiteményt siit. 6

0 193/ 5000

PYCCKM  AHTTIMICKWA  OPAHLY3CKWiA v

Elle est belle. Il est intelligent. Il lit. Elle lave la vaisselle. Il construit. w
Elle coud. Il enseigne. Elle cuisine. Il fait des recherches. Elle éléve un
enfant. Il joue de la musique. C'est une femme de ménage. C'est un
politicien. Il gagne beaucoup d'argent. Elle prépare un gateau. C'est un
professeur. Clest une assistante.

© Dz <

Ornpasurs orse

Source https://www.reddit.com/r/europe/comments/m9uphb/hungarian_has_no_gendered_pronouns_so_google/


https://www.reddit.com/r/europe/comments/m9uphb/hungarian_has_no_gendered_pronouns_so_google/

Motivating examples: Google translate

-
Goog = @
[

ENGLANT!

= Google Kaantaid

Ra Teksti =

e o
han hoitaa las(a han vo ©

\asta. han raka:

TUNNISTA KIELI B (uvaa. hanv1haalastaan SUOMI  ENGLANTI  HOLLANTI v
) %
Han hoitaa la{ ISR AN She is taking care of the child. A
” - he chil = o
Han lys lasta. L He hits the baby.
Y.
Han rakastaa She loves baby.

Hén vihaa las

Source https://kotiliesi.fi/ihmiset-ja-ilmiot/ilmiot/miksi-google-kaantajan-mukaan-mies-johtaa-ja-mies-tiskaa/
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https://kotiliesi.fi/ihmiset-ja-ilmiot/ilmiot/miksi-google-kaantajan-mukaan-mies-johtaa-ja-mies-tiskaa/

Motivating examples: Twitter cropping

Fact: Twitter automatically crops large images in order to fit the size of
an average mobile screen.
Original

Cropped




Motivating examples: Twitter cropping
Fact: Twitter automatically crops large images in order to fit the size of
an average mobile screen.

Question: How will Twitter crop these two images??




Motivating examples: Twitter cropping

Fact: Twitter automatically crops large images in order to fit the size of
an average mobile screen.

nota
@NotAFile

Twitter ,S TeSPOILSE: (nttps://blog.twitter.com/en_us/topics/product/2020/transparency-image-cropping.html)


https://blog.twitter.com/en_us/topics/product/2020/transparency-image-cropping.html

Motivating examples: Twitter cropping

Fact: Twitter automatically crops large images in order to fit the size of
an average mobile screen.

A Tony "Abolish (Po)ICE" Arcier

y
' Trying a horrible experiment.
Which will the Twitter algorithm pick: Mitch McConnell or
Barack Obama?

0 1)

TWltt er ’ S I‘eSp OINISE: (nttps://blog.twitter.com/en_us/topics/product/2020/transparency-image- cropping.html)


https://blog.twitter.com/en_us/topics/product/2020/transparency-image-cropping.html

Motivating examples: Twitter cropping

n=10,000 samples; Ao s = prerr — 0.5; B=Black, W=White, F=Female, M=Male

1.0
Race Gender Cross Aggregate
w 08 Bos Bos Bos Bos Bos Bos Bos Bos
Vi -7% -2% +7% +12% +5% -14% 4% +8%
~N 0.6
+
< 0.4
Q
0.2
0.0

Source:

https://blog.twitter.com/engineering/en_us/topics/insights/2021/sharing-learnings-about-our-image-cropping-algorithm

More details in associated paper (Vee, Tantipongpipat, and Mishra, 2021)



https://blog.twitter.com/engineering/en_us/topics/insights/2021/sharing-learnings-about-our-image-cropping-algorithm

Today’s plan

1. Individual fairness

2. Group fairness

2.1 Definitions / vocabulary for binary classification

2.2 Types of approaches

3. Regression with demographic parity constraint



Individual fairness paradigms

“treat like cases as like” (< Aristotel)
“Ensure that similar individuals are treated similarly”

Example. Consider binary classification problem, where observations are
of the form (x,y) € X x {0,1}. Individual fairness always considers
randomized predictions f: X — A({0,1})



Individual fairness paradigms

“treat like cases as like” (< Aristotel)
“Ensure that similar individuals are treated similarly”

Example. Consider binary classification problem, where observations are
of the form (x,y) € X x {0,1}. Individual fairness always considers
randomized predictions f: X — A({0,1})

1. Similarity of predictions: D : A({0,1}) x A({0,1}) — Ry
2. Similarity of individuals: d: X x X — R,

A prediction f: X — A({0,1}) is called perfectly (D, d)-individually fair if
Vi, x0 € X

‘D(f(wl)af($2)) < d(z1, T2) ‘




Individual fairness paradigms

“treat like cases as like” (< Aristotel)
“Ensure that similar individuals are treated similarly”

Example. Consider binary classification problem, where observations are
of the form (x,y) € X x {0,1}. Individual fairness always considers
randomized predictions f: X — A({0,1})

1. Similarity of predictions: D : A({0,1}) x A({0,1}) — Ry
2. Similarity of individuals: d: X x X — R,

A prediction f: X — A({0,1}) is called perfectly (D, d)-individually fair if
Vi, x0 € X

‘D(f(wl)af($2)) < d(z1, T2) ‘

A prediction f: X — A({0,1}) is called approzimately
(D, d, v, y)-individually fair if

[Px,xo) (D(F(X1). /(X2)) > d(X 1, X2) +7) < a

where X1, X5 are independent copies of X



Group fairness paradigm

(feature, sensitive attribute, label) ~Pon X x & x Y
X S Y

Predictions: f: 2 — )
» Fairness through awareness: Z = X x S (disparate treatment)
» Fairness through UNawareness: Z = X' (legal reasons: regulations)

Risk: f— R(f)
> classification: R(f) =P(Y # f(Z))
> regression: R(f) = E(Y — f(Z))?

Fairness criteria — dichotomy of prediction functions: which functions
we call fair? There are a lot of definitions.

Connections of ML fairness notions with political philosophy



Popular definitions of fair classifiers

» Demographic Parity (DP)
B(f(Z)=1]5=0)=P(f(Z)=1]5 = 1)

Prediction rate is the same for two groups

Random variable f(Z) is independent from S

DP (not differential privacy!) cares only about X|S.
Constant predictions satisfy DP

Ll



Popular definitions of fair classifiers

> Demographlc Parlty (DP) Calders, Kamiran, and Pechenizkiy, 2009)
P(f(Z2)=1|5=0)=P(f(Z2)=1]5=1)

Prediction rate is the same for two groups

Random variable f(Z) is independent from S

DP (not differential privacy!) cares only about X|S.
Constant predictions satisfy DP

Ll

> Equalized Odds (Hardt, Price, and Srebro, 2016)
P(f(Z2)=y|Y =y.5=0)=P(f(Z2)=y|Y =y.5=1) Vye{0,1}
1. Equal True Positive and True Negative rates

2. Requires more knowledge about the distribution
3. Constant predictions satisfy Equalized Odds



Popular definitions of fair classifiers

» Equal Opportunity
P(f(Z)=1|Y=1,5=0)=P(f(Z2)=1|Y =1,5=1)
1. Equal True Positive rates

2. If a person Z is qualified (Y = 1) then positive prediction (f(Z) =1) is
given with the same probability for any sensitive attribute



Popular definitions of fair classifiers

» Equal Opportunity (iardt, Price, and Srebro, 2016)
P(f(Z)=1|Y =1,S=0)=P(f(Z)=1|Y =1.5 = 1)
1. Equal True Positive rates

2. If a person Z is qualified (Y = 1) then positive prediction (f(Z) =1) is
given with the same probability for any sensitive attribute

» Test fairness (Chouldechova, 2017)
B(Y =1]5=0,/(Z)= ) =B(Y =1| S = 1, {(Z) = 1

1. Y independent from S conditionally on f(Z) = 1.
2. Closely related to per-group calibration.



Global view on group fairness constraints

Most of the definitions of fairness fall inside or try to reflect only 3 criteria
1. f(Z) L S - independence (DP, Statistical Parity)

2. (f(Z) L S)|Y - separation (Equal Odds, Equal Opportunity)
3. (Y L S)| f(Z) - sufficiency (Test fairness)

N.B. Sometimes we consider a score function f(Z) € [0,1]. Above notions
applied in this case ensure that any threshold will result in fair
classification : incurs higher drop in accuracy; used in regression.

Taken from Chapter 2 of



Impossibilities for score functions

. f(Z) L S - independence (DP, Statistical Parity)
. (f(Z) L S)|Y - separation (Equal Odds, Equal Opportunity)

. (Y L S)| f(Z) - sufficiency (Test fairness)

If S and Y are not independent, then sufficiency and independence
cannot both hold.

IfY € {0,1}, S and Y are not independent, f(Z) is not independent
from Y, then independence and separation cannot both hold.

If S and Y are not independent, and P(Y = 1) € (0,1), then
separation and sufficiency cannot both hold.

Taken from Chapter 2 of
propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Impossibilities for score functions

1. f(Z) L S - independence (DP, Statistical Parity)
2. (f(Z) L S)|Y - separation (Equal Odds, Equal Opportunity)

3. (Y LS)|f(Z) - sufficiency (Test fairness)
» If S and Y are not independent, then sufficiency and independence
cannot both hold.

> If Y € {0,1}, S and Y are not independent, f(Z) is not independent
from Y, then independence and separation cannot both hold.

» If S and Y are not independent, and P(Y = 1) € (0, 1), then
separation and sufficiency cannot both hold.

A fact: famous example of COMPAS nearly satisfied sufficiency, but failed to
satisfy separation. Due to the latter propublica published an article that
extremely influenced the field of algorithmic fairness

Taken from Chapter 2 of
propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Three (rough) types of methods: pre-processing

Pre-processing — Fair representation
Find a mapping Z — $(Z) such that

¢(Z) LS
then use any method on the representation.
A guarantee on finite sample can look like
KS ( Law(p(Z) | S = 0, data), Law(¢(Z) | S = 1, data)) is small
Typically, (unsupervised) optimal fair representation is defined as

©* € argmin {E[d(X,p(Z))] : p(Z) L S} .



Three (rough) types of methods: in-processing

In-processing
fr€argmin{R(f) : f(Z) L S}
JeF

In-processing type method: Given data (X1,51,Y1),..., (X, Sn, Yn)
build an estimator f as a solution

gcl’élg {ﬁ(f) + )\0 . Qcompl(f) + )\1 ' Qfairness(f)}

1 Often methods with good guarantees are not tractable
2 Often tractable methods are not supported by guarantees



Three (rough) types of methods: in-processing

In-processing
fr€argmin{R(f) : f(Z) L S}
JeF

In-processing type method: Given data (X1,51,Y1),..., (X, Sn, Yn)
build an estimator f as a solution

gcl’élg {ﬁ(f) + )\0 . Qcompl(f) + )\1 ' Qfairness(f)}

1 Often methods with good guarantees are not tractable

2 Often tractable methods are not supported by guarantees
N.B. There might be an issue of existence of non-trivial solutions,
especially if Z = X. For instance if F is the family of linear classifiers
(linear regression), and X | S are Gaussians we can end-up with
constant fr, even if the underlying data comes from linear model.



Three (rough) types of methods: post-processing

Post-processing: given data, base algorithm h, find a transformation
h— T(h) ,

so that T'(h) satisfies your fairness constraint.



Three (rough) types of methods: post-processing

Post-processing: given data, base algorithm h, find a transformation
h— T(h) ,

so that T'(h) satisfies your fairness constraint.
Typical algorithm construction is based on the connection between

i, € argmin {R(h) : his fair} and hp,. € argmin R(h)
h:Z—Y h:Z2—=Y

In particular, often you can show that

h?air = T*(hanes) ’

treat the base algorithm h as if it were a Bayes and estimate T



Regression with Demographic Parity

joint works with C. Denis, M. Hebiri, L. Oneto, M. Pontil, and N. Schreuder



Regression + Demographic Parity

(feature, sensitive attribute, signal) ~Pon RYx S xR
—_—— . , —~—
X S Y ={1,...K}

Prediction: f: R4 xS — R
Risk: R(f) = E(f*(X,S) — f(X,9))? where f* =E[Y | X, 5]

Demographic Parity fairness

F(X,8) LS

Optimal fair prediction:

fi € argmin {R(f) : f(X,S) L S}



An illustration and main assumption

F(X,8) LS

Unfair prediction Fair prediction

o |

Assumption (A)

The group-wise prediction distributions Law(f*(X,.S) | S = s) have finite
second moment and are non-atomic for any s in S.




Main insight

Optimal fair: f5 e argmin {R(f) : f(X,S) L S}
fRIXS—R

Bayes optimal: f*e argmin R(f)
fRIXS—R

Question: is there a link between f; and f*?

Theorem (informal with S = {1,2})
Set ws; = P(S=s). Let Assumption (A) be satisfied, then

Law(fJ(X,S)) = aurgminE:wsWQ2 <Law(f*(X,S) | S =s), V> ,
veP2(R) seS

Wasserstein barycenter problem

fo®, 1) =wi f*(x,1) + wTy 5 0 f*(x, 1), vz e R? |

T; o — optimal transport map from Law(f* | S = 1) to Law(f* | S = 2).




Interpretation for S = {1,2}

Fair optimal: fj(x,1) = w f"(x,1) + w2Ff:1\s:2 o Fyejg=1 0 f*(x,1)

Fair optimal prediction f; with w; = 2/5 and wy = 3/5

2 ) === Law of f*|S=1
—= Law of f*|S=2




Interpretation for S = {1,2}

Fair optimal: fj(x,1) = w f"(x,1) + wQFf:l\S:Q o Fyejg=1 0 f*(x,1)

Fair optimal prediction f; with w; = 2/5 and wy = 3/5

s \‘ === Law of f*|S=1
/£ N\ —= Law of f*|S=2
/£ \
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/ \ 7 ~,
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Generic post-processing estimator (S = {1,2})

Fair optimal: fj(x,1) = wy f* (2, 1) + w1} 50 f*(x, 1)

» Base estimator: f :R% x {1,2} — R trained independently from the
following data.
ii.d.

» Unlabeled data: Vs € S we observe X7,..., X% "~ Px|g—s

Meta algo: 1. estimate ws = P(S = s)
2. estimate transport maps 17, and 75,

using unlabeled data and base estimator



Generic post-processing estimator (S = {1,2})

Fair optimal: fj(x,1) = wy f* (2, 1) + w1} 50 f*(x, 1)

» Base estimator: f :R% x {1,2} — R trained independently from the
following data.

» Unlabeled data: Vs € S we observe X7,..., X} v

~" Px|s=s
Meta algo: 1. estimate ws = P(S = s)
2. estimate transport maps 17, and 75,
using unlabeled data and base estimator
Put together: 3. fo(x,1) =y f(x,1) +woTy 0 f(x,1)



Theoretical guarantees

Theorem (informal)

For any joint distribution P of (X, S,Y), any base estimator f it holds that

. o 1
E [ilelﬂg P(fo(X,S) <t[S=1,D) - P(fo(X,S) < t|5=2»D)” S NN,

Under additional assumptions on P we have

Ellfo—fili S E|f-f* psN; "
I fo = follx [ [ERVADS

sES

quality of base estimator

transport estimation

Additional assumptions: (f*(X,S) | S = s) admits density which is upper
and lower bounded (leading constant for the risk rate depends on this
upper/lower bound).

Ny and N2 — number of unlabeled samples from Px|g—; and Px|g—_o



How to measure unfairness 7
Demographic Parity: f(X,8) LS

» Problem: too stiff — either fair or unfair.
» Question: how to quantify unfairness i.e., violation of DP?

» Question: how to trade accuracy for fairness?

Popular measure is based on KS distance

Uss(f) ==Y KS (Law(f(X,S) | S = s), Law(f(X,5)))

seS



How to measure unfairness 7
Demographic Parity: f(X,8) LS

» Problem: too stiff — either fair or unfair.
» Question: how to quantify unfairness i.e., violation of DP?

» Question: how to trade accuracy for fairness?

Popular measure is based on KS distance

Uks(f) ==Y KS(Law(f(X,S)| S = s), Law(f(X, 5)))

seS

We consider: Uf) = minZwswg(Law(f(X, S)|S = s),v)
seS
From previous result:  R(fy) =U(f")



Improving unfairness oracles

j

a-Relative Improvement ) € argmin {R(f) : ‘L{(f) < al(f*)

» [* —1/q times fairer than f*.
» i — optimal DP fair prediction.
» [ = [" — Bayes optimal prediction.



Improving unfairness oracles

a-Relative Improvement ) € argmin {R(f) : ‘L{(f) < al(f*)

j

> [:— 1/a times fairer than f*.
» [, — optimal DP fair prediction.
> [ = f* — Bayes optimal prediction.

Theorem

Under Assumption (A), for all a € [0,1] it holds that

fa=Vafi +(1=Va)f;
a-RI = /a - Bayes optimal + (1—+/a) - Fair optimal

N.B. We can use previous algorithm to estimate f; and any standard
algorithm for estimation of f*



Idea of the proof

Goal:  min {ZwE[ F(X,8) |8 =s] ;u(f)gaU(f*)}

LB: Zwswg (Law(f(X,S)|S = s), Law(f* (X, S)|S = s))

s=1



Idea of the proof

Goal:  min {ZwsE[ F(X,8) |8 =s] ;u(f)gaU(f*)}

LB: Zwswg (Law(f(X,S)|S = s), Law(f* (X, S)|S = s))

s=1

New problem

K K
min {ZwSWQ bg,ag : Zwswg(bs,(/‘b) SaZwSWS(as,Ca)}

bePI (R) = =

Geometric lemma with o = .75 Geometric lemma with a = 0.5 Geometric lemma with o = (.25
a a
1-y/a N -
Viovad, \l—vﬁ
\ -
\ by 1-va
\ \
\ \
va Y b
\ va \
\ M o
\ \ \
\ \
\

\
TN
-7 N,
\ - \
- \, -7 N, e N
e AN e AN b by
- \
~ \ 0 by
h N




Risk/fairness trade-off

a-Relative Improvement [ € arg min {R(f) : ‘Z/{(f) < alU(f")

j

Proposition

Under Assumption (A), for all a € [0, 1] it holds that

Rif2) = vy {u()] and u(s) = o[ut)]




Risk/fairness trade-off

a-Relative Improvement [ € arg min {R(f) : ‘Z/{(f) <al(f")

j

Proposition

Under Assumption (A), for all a € [0, 1] it holds that

R(f2) = (1=Vay u(f)| and u(f;)=alu(f)]

(C. and Schreuder, 2020)

Risk and unfairness of oracle a-relative improvements (a-Rl)

—— highu(f*)
—=—= moderate U(f*)
== low U(f*) _
S N £3
2 N S
‘ \\\\\ ————————————
~ | e >S< T e T T
=~ —_ e T
e T
=== =" Bt TPy by =
0 0.25 0.5 0.75 1



Pareto efficiency

> Multi-objective optimization: ming.z_,g ( (), R(f ))
)-

» Each prediction f defines a point (U(f), R(f)
» fis dominated by f"ifft R(f") < R(f) and U(f") <U(f).

Pareto Frontier (PF) with fixed 24 ( f*) Example of a dominated region Evolution of PF when U/( f*) decreases
fi

fios f=foa

Jil




Minimax statistical framework

Data: (X1,51,Y1),- -, (X0, Sn, Ya) "5 Pseg), (f5,0) € Fx O

Given a € [0,1] and ¢ > 0, the goal of the statistician is to construct an

estimator f, which simultaneously satisfies

1. Uniform fairness guarantee:
V(f0) € Fx O P (Ulf) <aU(f)) =11,
2. Uniform risk guarantee:

V(f*0) €FxO P (RUf) < s (F.0.8) 21—t .



Problem-dependent lower bound

For t € (0,1), let §,,(F, ©,t) be a sequence that verifies

inf  sup P (R(f) > 5n(}',®,t)) > ¢
f (f*,0)eFx©

Theorem

Any estimator f satisfying

P o) (Ulf) <au(r)) z1-¢

inf
(f*, )G]—'x@

verifies

sup Ps-.0) RZ(f) = 61(F,0,6) v (A—aU' 2 (f*) | = tn(1—1)
* ——
70&d _RUA(f2)




Conclusions

. Individual fairness — predict with Lipschitz functions

D(f(x), f(x)) < d(w,z')

. Group fairness — enforce some independence criterion

fz)yLs, — (f(2) LY, (¥ LS)[f(Z)

. Regression with demographic parity (f(Z) L S) can be characterized
by Wasserstein barycenter problem
R(fo) =U(f")

. Risk/fairness trade-off can be characterized explicitly for introduced
notion of unfairness



Thank you for your attention

pbtol EUROPEAN COMMISSION
Brussels, 21.4.2021

COM(2021) 206 final
2021/0106(COD)

Proposal for a

REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

LAYING DOWN HARMONISED RULES ON ARTIFICIAL INTELLIGENCE (ARTIFICIAL
INTELLIGENCE ACT) AND AMENDING CERTAIN UNION LEGISLATIVE ACTS



Questions?

PROHIBITED ARTIFICIAL INTELLIGENCE PRACTICES

Article 5

The following artificial intelligence practices shall be prohibited:|

(@

(®

the placing on the market, putting into service or use of an Al system that deploys subliminal techniques
beyond a person’s consciousness in order to materially distort a person’s behaviour in a manner that
causes or is likely to cause that person or another person physical or psychological harm;

the placing on the market, putting into service or use of an Al system that exploits lany of the
vulnerabilities of a specific group of persons due to their age, physical or mental disability, in order to
materially distort the behaviour of a person pertaining to that group in a manner that causes or is likely
to cause that person or another person physical or psychological harmj

the placing on the market, putting into service or use of Al systems by public authorities or on their
behalf for the evaluation or classification of the trustworthiness of natural persons over a certain period
of time based on their social behaviour or known or predicted personal or personality characteristics,
with the social score leading to either or both of the following:

(i) |detrimental or unfavourable treatment of certain natural persons or whole groups thereof in social
contexts which are junrelated to the contexts in which the data was originally generated|or
collected;

(i) detrimental or unfavourable treatment of certain natural persons or whole groups thereof that is
unjustified or disproportionate|to their social behaviour or its gravity;
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