

Integrating hierarchical information in the analysis of microbiome data

C. Ambroise¹, A. Bichat^{1,2,3}, *M. Mariadassou*²

¹LaMME, UEVE, Université Paris-Saclay, Evry, France ²MAIAGE, INRAE, Université Paris-Saclay, Jouy-en-Josas, France ³Enterome, Paris, France

DATA IA Workshop November 5th, 2020

M. Mariadassou (INRAE MaIAGE)

Motivation

Mathematical model

3 Inference

Ecological community of microorganisms that reside in an environmental niche.

Published associations with:

- Inflammatory bowel diseases
- Liver disease
- Vaccine efficiency
- Anxiety
- Muscular strength
- etc

Ecological community of microorganisms that reside in an environmental niche.

Published associations with:

- Inflammatory bowel diseases
- Liver disease
- Vaccine efficiency
- Anxiety
- Muscular strength
- etc

Strong interest in findings (groups of) microbes associated to a given condition.

A species \times sample count table

	Таха	A1	A2	A3	B1	B2	B3
1	Lactobacillus	2318	1388	1361	2256	88	1770
2	Prevotella	0	1	1	0	525	7
3	Megasphaera	0	1	0	0	402	0
4	Sneathia	0	0	0	0	302	0
5	Atopobium	0	1	0	0	84	0
6	Streptococcus	0	0	3	0	0	0
7	Dialister	0	1	0	0	152	4
8	Anaerococcus	0	1	3	2	0	9
9	Peptoniphilus	0	1	0	0	7	2
10	Eggerthella	0	0	0	0	2	0

Taxonomic / phylogenetic tree

	Phylum	Class	Order	Family	Genus
1	Actinobacteria	Actinobacteria	Actinomycetales	Actinomycetaceae	Actinobaculum
2	Actinobacteria	Actinobacteria	Actinomycetales	Actinomycetaceae	Actinomyces
3	Actinobacteria	Actinobacteria	Actinomycetales	Actinomycetaceae	Arcanobacterium
4	Actinobacteria	Actinobacteria	Actinomycetales	Actinomycetaceae	Mobiluncus
5	Actinobacteria	Actinobacteria	Actinomycetales	Actinomycetaceae	Varibaculum
6	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium
7	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Gardnerella

Differential abundance analysis

- For each taxa i (in $\{1, \ldots, n\}$), test
 - *H*_{0*i*}: Abundances are equal in groups *A* and *B*
 - H_{1i} : Abundances are not equal in groups A and B
- Hundred of univariate tests and p-values
- Need for a multiple testing correction procedure

Differential abundance analysis

- For each taxa i (in $\{1, \ldots, n\}$), test
 - H_{0i}: Abundances are equal in groups A and B
 - H_{1i}: Abundances are not equal in groups A and B
- Hundred of univariate tests and p-values
- Need for a multiple testing correction procedure

- Taxa / group associations may show a phylogenetic signal
- Similar taxa ⇒ similar levels of association
- Can we leverage the tree when correcting the tests?

Motivation

2 Mathematical model

3 Inference

Mathematical Model

Standard assumptions on *p*-values

- Under $H_{0i}, p_i \sim U(0, 1)$
- Under $H_{1i}, p_i \preccurlyeq \mathcal{U}(0, 1)$

Standard assumptions on z-scores

- Under H_{0i} , $z_i = \Phi^{-1}(p_i) \sim \mathcal{N}(0, 1)$
- Under H_{1i} , $z_i = \Phi^{-1}(p_i) \sim \mathcal{N}(m_i, 1)$ with $m_i < 0$

Mathematical Model

Standard assumptions on *p*-values

- Under $H_{0i}, p_i \sim \mathcal{U}(0, 1)$
- Under $H_{1i}, p_i \preccurlyeq \mathcal{U}(0, 1)$

Standard assumptions on *z*-scores

• Under
$$H_{0i}, z_i = \Phi^{-1}(p_i) \sim \mathcal{N}(0, 1)$$

• Under H_{1i} , $z_i = \Phi^{-1}(p_i) \sim \mathcal{N}(m_i, 1)$ with $m_i < 0$

Hierarchical assumptions on *z*-scores

• The (z_i) are correlated according to a tree.

Stochastic Process on a Tree

-100

time

The tree is known. Only *tip* values are observed

(Felsenstein, 1985)

Ornstein Uhlenbeck:

$$\mathbb{V}\mathrm{ar}\left[A \mid R\right] = \frac{\sigma^2}{2\alpha} (1 - e^{-2\alpha t})$$
$$\mathbb{C}\mathrm{or}(A, B \mid R) = e^{-2\alpha(t - t_{AB})}$$

-150

-200

0

-50

$dZ(t) = \alpha[\beta(t) - Z(t)]dt + \sigma dB(t)$

Deterministic part:

- $\beta(t)$: Effect size
- $\ln(2)/\alpha$: phylogenetic half live.

Stochastic part:

- Z(t): z-scores \simeq estimated effect size.
- $\sigma dB(t)$ Brownian fluctuations.

time

C D E

Negative shift $\Rightarrow E[Z] \le 0 \Rightarrow$ Small p-values \Rightarrow Differential abundance

Statistical Model

Assume that *z*-scores evolve as an OU on the tree with a sign constraint on the mean.

•
$$Z = (z_1, \ldots, z_n) \sim \mathcal{N}(M, \Sigma_{\alpha})$$
 where

•
$$M = (m_1, \ldots, m_n) \in \mathbb{R}^n_-$$

• Σ_{α} is the variance matrix of an OU process on a tree.

Statistical Model

Assume that *z*-scores evolve as an OU on the tree with a sign constraint on the mean.

•
$$Z = (z_1, \ldots, z_n) \sim \mathcal{N}(M, \Sigma_{\alpha})$$
 where

•
$$M = (m_1, \ldots, m_n) \in \mathbb{R}^n_-$$

Σ_α is the variance matrix of an OU process on a tree.

Goal

Find the negative entries of M

Linear regression model

Tree-structure enforced by decomposition $M = TW(\alpha)\Delta$.

Linear regression model

Tree-structure enforced by decomposition $M = TW(\alpha)\Delta$.

Linear regression model

Tree-structure enforced by decomposition $M = TW(\alpha)\Delta$.

Goal: Find $\{i : m_i < 0\}$ through $\{j : \Delta_i \neq 0\}$

M. Mariadassou (INRAE MaIAGE)

Motivation

Mathematical model

Estimating M

The MLE of Δ (and in turn *M*) is solution to

$$rgmax_{\Delta ext{ s.t. } \mathcal{TW}(lpha)\Delta \leq 0} \| Z - \mathcal{TW}(lpha) \Delta \|^2_{2, \Sigma_{lpha}^{-1}}$$

Equivalent to¹:

$$\underset{\Delta \text{ s.t. } C\Delta \leq 0}{\operatorname{argmax}} \|Y - X\Delta\|_2^2$$

¹ with *C*, *Y* and *X* some simple transforms of *Z* and $TW(\alpha)$, Σ_{α} ² Using a variant of the LASSO shooting algorithm

M. Mariadassou (INRAE MaIAGE)

Hiearchical analyses

The MLE of Δ (and in turn *M*) is solution to

$$rgmax_{\Delta ext{ s.t. } \mathcal{TW}(lpha)\Delta \leq 0} \| Z - \mathcal{TW}(lpha)\Delta \|^2_{2, \Sigma_{lpha}^{-1}}$$

Equivalent to¹:

$$\operatorname{argmax}_{\Delta ext{ s.t. } C\Delta \leq 0} \|Y - X\Delta\|_2^2$$

Add a ℓ_1 -penalty to sparsify the solution and solve²

$$\hat{\Delta} = \underset{\Delta \text{ s.t. } C\Delta \leq 0}{\operatorname{argmax}} \|Y - X\Delta\|_2^2 + \lambda \|\Delta\|_1$$

using penalized likelihood for selection of α and λ

¹with *C*, *Y* and *X* some simple transforms of *Z* and *TW*(α), Σ_{α} ²Using a variant of the LASSO shooting algorithm

M. Mariadassou (INRAE MaIAGE)

Hiearchical analyses

Illustration

15/22

Estimates of $\hat{\Delta}$ (and \hat{M}) are **biased** and lack **confidence intervals**

Estimates of $\hat{\Delta}$ (and \hat{M}) are **biased** and lack **confidence intervals**

Debiasing(Zhang and Zhang, 2014)• One-step correction of the LASSO estimator $\hat{\Delta}_{j}^{debias} = \hat{\Delta}_{j} + \frac{S_{j}^{\top}(Y - X\hat{\Delta})}{S_{j}^{\top}X_{j}}$

• Where S is a relaxed Graham-Schmidt orthogonalization of X.

Estimates of $\hat{\Delta}$ (and \hat{M}) are **biased** and lack **confidence intervals**

Debiasing(Zhang and Zhang, 2014)• One-step correction of the LASSO estimator $\hat{\Delta}_{j}^{debias} = \hat{\Delta}_{j} + \frac{S_{j}^{\top}(Y - X\hat{\Delta})}{S_{i}^{\top}X_{i}}$

• Where S is a relaxed Graham-Schmidt orthogonalization of X.

Confidence intervals

(Javanmard et al., 2019)

BH-like procedure based on asymptotic normality of the Â^{debias}_i

Illustration

M. Mariadassou (INRAE MaIAGE)

Motivation

Mathematical model

3 Inference

Simulation results: zazou (ss/ci) is competitive

M. Mariadassou (INRAE MaIAGE)

Fiji adult and children gut microbiome (Brito et al., 2016)

- A framework for differential analyses that integrates taxonomic information
- Based on combining LASSO, trees and stochastic processes
- That performs well on simulations
- Implemented as a github R package (abichat/zazou)
- Technical details available in Bichat et al. (arXiv: 2009.13335)

A. Bichat, C. Ambroise, and M. Mariadassou. Hierarchical correction of p-values via a tree running ornstein-uhlenbeck process.

- I. L. Brito, S. Yilmaz, K. Huang, L. Xu, S. D. Jupiter, A. P. Jenkins, W. Naisilisili, M. Tamminen, C. S. Smillie, J. R. Wortman, B. W. Birren, R. J. Xavier, P. C. Blainey, A. K. Singh, D. Gevers, and E. J. Alm. Mobile genes in the human microbiome are structured from global to individual scales. *Nature*, 535(7612):435–439, July 2016. doi: 10.1038/nature18927. URL https://doi.org/10.1038/nature18927.
- J. Felsenstein. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4):783-791, July 1985. doi: 10.2307/2408678. URL http://links.istor.org/sici?sici=0014-3820(198507)39:4%3C783:CLOPAA%3E2.0.CO;2-L.
- T. F. Hansen. Stabilizing selection and the comparative analysis of adaptation. *Evolution*, 51(5):1341–1351, Oct. 1997. URL http://www.jstor.org/stable/2411186.
- A. Javanmard, H. Javadi, et al. False discovery rate control via debiased lasso. *Electronic Journal of Statistics*, 13(1):1212–1253, 2019.
- J. Ravel, P. Gajer, Z. Abdo, G. M. Schneider, S. S. K. Koenig, S. L. McCulle, S. Karlebach, R. Gorle, J. Russell, C. O. Tacket, and et al. Vaginal microbiome of reproductive-age women. *Proceedings of the National Academy of Sciences*, 108(Suppl. 1): 4680–4687, March 2011. ISSN 1091-6490. doi: 10.1073/pnas.1002611107. URL http://dx.doi.org/10.1073/pnas.1002611107.
- C.-H. Zhang and S. S. Zhang. Confidence intervals for low dimensional parameters in high dimensional linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1):217–242, 2014.