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Fact sheet

Capsule bio
2019. Full-time Criteo, head of Research of Innovation
2018. Part-time researcher at Criteo x Prof. at Aix-Marseille Université
2011. Prof. at Aix-Marseille Université
2004. Assist Prof. at Aix-Marseille Université
2004. Postdoc UC Irvine
2003. (20 years ago!!) PhD in this very place (almost, cf. Capitaine Scott)

Miscellaneous info
Criteo AI Lab. 20+ permanent researchers, 10+ PhD students, 120 (ML) engineers
Publications. Publications at NeurIPS, ICML, ICLR, AISTATS…
Partnerships. Universities, INRIA (cf. FAIRPLAY joint team)
Inner beat. Bi-annual evaluation, quarterly company-level synchro (OKR)
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Criteo: from Retargeting to Retail Media Advertising
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The History of Machine Learning at Criteo in a Glimpse
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Data valuation through Machine Learning

Expand the science and technology of scalable AI
for the Open Internet data to be rightly valued,

secured and transparent commodities

⇒ ML Science: game theory, reinforcement learning, deep learning for
structured data, generative AI, privacy-preserving ML
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Data valuation through Machine Learning

FAIRPLAY: Criteo x INRIA joint team, with ENSAE
Coopetitive AI: fairness, privacy, incentivization

«L’objectif derrière le travail de l’équipe-projet est ainsi d’améliorer les systèmes automatiques
de places de marché, mais également d’être en mesure de connaître le degré de discrimination

de certains algorithmes, le tout en restant compatible avec les notions de protection de vie
privée.»1

▶ DU-Shapley: A Shapley Value Proxy for Efficient Dataset Valuation. F. Garrido-Lucero, B.
Heymann, M. Vono, P. Loiseau, V. Perchet, Arxiv, 2023

▶ Collaborative Ad Transparency: Promises and Limitations. E. Gkiouzepi , A. Andreou , O.
Goga , P. Loiseau, Symposium on Security and Privacy, 2023

▶ An algorithmic solution to the Blotto game using multi-marginal couplings. V. Perchet , P.
Rigollet , T. Le Gouic Economics and Computation, 2022

▶ …

1https://www.inria.fr/fr/comment-eviter-discrimination-donnees-utilisateurs-publicite-fairplay-criteo
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Scaling Machine Learning
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Scaling Machine Learning

AI, a new way of programming: everything old is new again2

Problems: distributed learning, robust learning, privacy-preserving learning, deployment,
platform, infra, verification, complexity...

2https://towardsdatascience.com/machine-learning-vs-traditional-programming-c066e39b5b17
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Educating on ML... beyond Master and PhD students

Targetting C-levels, commercial teams, HR teams...
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Educating on ML... beyond Master and PhD students

and also technical teams...

Bootcamps. 10-day internal education on ML to software developers
Voyagers/Khali. 2-week to 2-quarter internal mobility, e.g.
▶ Horizontal Personalized Federated Learning for Criteo Keyword Model

▶ Improved Generalized Linear Value Function Approximation in Episodic
Reinforcement Learning

▶ Game theory for data-sharing mechanisms

Reading and coding groups. Group reading of a book or implementation of a
tutorial (experimental)
Hackathons. Annual 3-day Hackathon

Out of Academia... and a Deep Dive on a PAC-Bayes Wasserstein 8 / 23



Outline

Out of Academia... learnings on how AI can be made
Fact sheet
Criteo and the Criteo AI Lab
Data valuation through Machine Learning
Scaling Machine Learning

Shedding a PAC-Bayesian Light on Adaptive Sliced-Wasserstein Distances
[Ohana et al., 2023]

Wasserstein Distances: Vanilla, Sliced, Adaptive
Quick Reminders of the PAC-Bayes Theory
Contributions: PAC Bayes meets Adaptive Sliced Wasserstein Distances
Conclusion and Outlooks

General Conclusion

References

Out of Academia... and a Deep Dive on a PAC-Bayes Wasserstein 9 / 23



Objective of the work

Joint work with R. Ohana (Flatiron, NY), K. Nadjahi (MIT, Boston), A. Rakotomamonjy (Criteo) @ICML2023

Provide a theoretical analysis for Adaptive Sliced Wasserstein Distances...
▶ SWD are distances between measures that are cheap to compute
▶ that primarily rely on a Uniform sampling of slices
▶ and that extend to non-uniform sampling of slices

using an alignment between Adaptive SWD and the PAC-Bayes Theory
▶ PAC Bayes bounds primarily characterize the generalization ability of the
stochastic Gibbs predictor [Alquier, 2021]

▶ Adaptive Sliced Wasserstein Distances do compute the error of a Gibbs
predictor
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From Wasserstein Distance...

Definition (Wasserstein distance)
Let p ∈ [1,∞). The p-Wasserstein distance between µ, ν two measures on Ω is given
by

Wp
p(µ, ν)

.
= inf

π∈Π(µ,ν)

∫
X×X
∥x− y∥ppdπ(x, y) , (1)

where Π(µ, ν) ⊂ P(X× X) denotes the set of probability measures on X× X, whose
marginals with respect to the first and second variables are µ and ν respectively.

Out of Academia... and a Deep Dive on a PAC-Bayes Wasserstein 11 / 23



to Empirical Wasserstein Distances
Definition
▶ Given two probability distributions µ, ν on Ω with metric ∥ · ∥q
▶ For (xi)n

i=1 ∼ µ, (yi)n
i=1 ∼ ν, let µ̂a

n =
∑n

i=1 aiδxi and ν̂b
n =

∑n
i=1 biδyi , with a and

b distributions, the p-Wasserstein distance is

Wp
p(µ̂

a
n, ν̂

b
n)

.
= min

Γ∈P

⟨Γ,Cq⟩F =
∑

i,j
γi,j∥xi − yj∥pp


where P .

=
{
Γ ∈ (R+)n×n| Γ1nt = a,ΓT1ns = b

}
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to (Empirical) Sliced Wasserstein Distance...

Definition (Sliced Wasserstein Distance)
▶ sample some random directions u ∈ Sd−1 uniformly
▶ project data on each random direction
▶ compute all 1D Wasserstein distances (cheap) and average them

SWDp
p(µ̂n, ν̂n)

.
=

1

k

k∑
j=1

Wp
p

(
1

n

n∑
i=1

δxi⊤uj ,
1

n

n∑
i=1

δyi⊤uj

)

SWDp
p(µ̂n, ν̂n) is an estimator of

SWDp
p(µ̂n, ν̂n; ρ)

.
=

∫
Sd−1

Wp
p

(
1

n

n∑
i=1

δxi⊤u,
1

n

n∑
i=1

δyi⊤u

)
ρ(u)du

when ρ is the uniform distribution on Sd−1
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SWDp
p(µ̂n, ν̂n) is an estimator of

SWDp
p(µ̂n, ν̂n; ρ)

.
= Eu∼ρWp

p

(
1

n

n∑
i=1

δxi⊤u,
1

n

n∑
i=1

δyi⊤u

)
= Eu∼ρWp

p
(
u∗
♯ µ̂n, u∗

♯ ν̂n
)

when ρ is the uniform distribution on Sd−1 (u∗
♯ µ̂n is the push-forward of µ̂n)
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to Adaptive Sliced Wasserstein Distances

Looking for ρ that makes the most discriminative Sliced Wasserstein Distance
▶ Max-SW [Deshpande et al., 2019] learns a single slice that maximizes the
distance:

maxSW(µ̂n, ν̂n)
.
= max

δθ: θ∈Sd−1
SWp

p(µ̂n, ν̂n; δθ) (2)

▶ Distributional SW [Nguyen et al., 2021] learns the whole distribution of slices
that maximizes the distance:

DSW(µ̂n, ν̂n)
.
= sup SWp

p(µ̂n, ν̂n; ρ)
E
θ,θ′∼ρ[|θ⊤θ′|]≤C, ρ∈P(Sd−1),

(3)

What is missing, what do we provide
▶ What is the generalization power of the learned ρ? Is ρ discriminative on
'unseen' data?

▶ We introduce PAC-Bayesian results to answer the above questions
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PAC Bayes Theory: bounds on the risk of the Gibbs predictor

Definition (Risks)
The empirical ℓ-risk r̂ℓ(ω, Sn) (ℓ being a loss function) and true ℓ-risk rℓ(ω) with
training data Sn = {z1, . . . , zn} and parameters ω ∈ Ω are

r̂ℓ(ω, Sn)
.
=

1

n

n∑
i=1

ℓ(ω, zi), rℓ(ω) .= Ez∼ξ[ℓ(ω, z)]

Theorem ([Catoni, 2003])
Let ρ0 ∈ P(Ω) a prior distribution. Assume bounded loss 0 ≤ ℓ ≤ C. For all λ > 0, for
any δ ∈ (0, 1), with probability > 1− δ (over dataset Sn): ∀ρ ∈ P(Ω),

Eω∼ρ[rℓ(ω)] ≤ Eω∼ρ [̂rℓ(ω, Sn)] +
λC2

8n +
1

λ

{
KL(ρ||ρ0) + log 1

δ

}
, (4)

with KL(ρ||ρ0) the Kullback-Leibler divergence between ρ and ρ0.
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PAC Bayes Theory: bounds on the risk of the Gibbs predictor

Remarks
▶ The Gibbs predictor is a stochastic predictor which, upon a call:

1. samples a predictor ω according to ρ
2. outputs a prediction according to ω

▶ PAC-Bayes bounds focus on aggregated risks (Eω∼ρ[rℓ(ω)] and
Eω∼ρ [̂rℓ(ω, Sn)]) instead of the risk the aggregated predictor ωρ

.
= Eω∼ρω

▶ They provide tight bounds on the risk of the Gibbs predictor
▶ Multiple works have turned PAC Bayes bounds into learning algorithms,
even for ωρ

The key observation to our work
SWDp

p(µ̂n, ν̂n; ρ) = Eu∼ρWp
p
(

u∗
♯ µ̂n, u∗

♯ ν̂n
)
is an aggregated risk, if the loss

considered is Wp
p
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Main results

Theorem (PAC Bayes Sliced Wasserstein)
With some conditions on the distributions µ and ν captured by φµ,ν,p and
ψµ,ν,p(n) : N∗ → R+, the following holds.
Let ρ0 ∈ P(Sd−1). ∀δ ∈ (0, 1), with prob. at least 1− δ: ∀ρ ∈ P(Sd−1),

SWp
p(µn, νn; ρ)−

λ

nφµ,ν,p −
1

λ

{
KL(ρ||ρ0) + log

(1
δ

)}
− ψµ,ν,p(n) ≤ SWp

p(µ, ν; ρ)

Notes
▶ Interpretation: Generalization guarantees on the learned distribution ρ
over population distribution µ, ν given training set µn, νn

▶ Actionable feature: maximize the l.h.s over ρ to maximize generalization
over µ, ν

▶ Many levels of samplings, expectations, crux of the proof is to identify the
right concentration phenomenon
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λ

nφµ,ν,p −
1

λ

{
KL(ρ||ρ0) + log

(1
δ

)}
− ψµ,ν,p(n) ≤ SWp

p(µ, ν; ρ)

Specific cases
▶ Bounded support measures with diam. ∆: φµ,ν,p = ∆2p

2 , ψµ,ν,p(n) ∝ p∆pn−1/2

▶ Sub-Gaussian measures of var. σ2 and τ2: φµ,ν,1 = σ2 + τ2, ψµ,ν,p(n) ∝ log n√n .

▶ Bernstein moment condition (BMC). µ (σ2, b)-BMC and ν (τ2, c)-BMC,
σ2⋆

.
= max(σ2, τ2), b⋆ .

= max(b, c): φµ,ν,1(λ, n) = 2σ2⋆(n− 2b⋆λ)−1,
ψµ,ν,p(n) ∝ log n√n .
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Derived Algorithm: Optimization of the Bound

In spirit
▶ Given a training dataset {(xi, yi)}ni=1 and a prior ρ0 ∈ P(Sd−1), find
ρ⋆(µn, νn) such that

ρ⋆(µn, νn) = arg sup
ρ∈F

SWp
p(µn, νn; ρ)−

KL(ρ||ρ0)
λ

The algorithmic way
▶ Input: dataset {(xi, yi)}ni=1, parameter λ, prior ρ0, initialization ρ

(0), nb.
iterations T, LR η

▶ for t← 1 to T
▶ L(ρ(t−1))← SWp

p(µn, νn; ρ(t−1))−KL(ρ(t−1)||ρ0)/λ
▶ ρ(t) ← ρ(t−1) + η∇ρL(ρ(t−1))

▶ Output: ρ(T)
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Excerpt of numerical simulations

Observations
▶ PACSW and DSW are always amongst the distances that generalize better
▶ Computing PACSW is, as of now, computationally demanding (KL estimation)
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Conclusion and Outlooks

Conclusion
▶ First PAC Bayesian generalization bound on Adaptive Slice Wasserstein
Distances

▶ Compelling numerical results
▶ DSW is a competitor, with less guarantees but more efficiency

Outlooks
▶ Further improve the computational efficiency of our algorithm
▶ Extend the usage to generative modelling (cf. paper)
▶ Connection between SWD and (Sparse) Principal Component Analysis
▶ Nothing to do with the above: a bandit approach to Sliced Wasserstein
distances
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General Conclusion

Real-world problems. Provide inspiration for academic research
Innovation and Transfer. A work on its own
Education. Key, at all levels, in all departments, in the entire society
Collaborations. AI is perfect place for cross-collaborations
Great experience!

Thanks
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