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December 2021: Boulder County, Colorado
● Snow drought condi=ons through fall and winter 2021 created dry land-cover
● 80-100 mph winds, combined with igni=on, launched an uncontrollable “fire storm”
● Loss of 2 lives. 1000 homes and 20 businesses were destroyed, and more damaged
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January 2018: Montecito, Santa Barbara County
● Thomas Fire destroyed 1063 structures and led to poor air quality
● Intense rainfall as the fire was nearing containment produced a debris flow
● 23 lives and over 130 homes were lost
● Damage to critical transportation and water resource infrastructure
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“The AI opportunity for the Earth is significant. Today’s AI explosion will see us add AI 
to more and more things every year.... As we think about the gains, efficiencies and 
new soluCons this creates for naCons, business and for everyday life, we must also 
think about how to maximize the gains for society and our environment at large.”

– The World Economic Forum: Harnessing ArCficial Intelligence for the Earth. 2018 

    
   
  



Climate Informa.cs is based on the vision that
Machine learning can shed light on climate change

2008 Started research on Climate Informatics, with Gavin Schmidt, NASA
 2010 “Tracking Climate Models” [Monteleoni et al., NASA CIDU, Best Application Paper Award]
 2011 Launched International Workshop on Climate Informatics, New York Academy of Sciences
 2012 Climate Informatics Workshop held at NCAR, Boulder, for next 7 years
 2013 “Climate Informatics” book chapter [M et al., SAM]
  2014 “Climate Change: Challenges for Machine Learning,” [M & Banerjee, NeurIPS Tutorial]
 2015 Launched Climate Informatics Hackathon, Paris and Boulder
 2018 World Economic Forum recognizes Climate Informatics as key priority
 2021 Computing Research for the Climate Crisis [Bliss, Bradley @ M, CCC white paper]
 2022 First batch of articles published in Environmental Data Science, Cambridge University Press 
 2023 12th Conference on Climate Informatics, Cambridge, UK
 2024 13th Conference on Climate Informatics, Turing Institute, London



Exponen=al growth in Environmental Data Science
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Approach: Exploit all available data
q Simulated data generated by physics-based models 

q  Numerical Weather Predic0on (NWP) models
q  General Circula0on Models (GCM)
q  Regional Climate Models (RCM)

q  Reanalysis data
q  Gridded data products from data assimila0on: 
applies physical laws to observa0ons

 
q  Observa9on data  

q  Satellite remote sensing data
q  In-situ data



AI Methods
q Semi-supervised, unsupervised, self-supervised learning

q  New methods for downscaling (super-resolu0on), interpola0on of geospa0al data  
q  New pretext tasks for self-supervised learning, e.g., STINT [Harilal et al., 2024]
q  Regulariza0on via mul0-tasking over variables, lead-0mes

q  Genera9ve AI
q  VAE, Normalizing Flows
q  Diffusion models
q  Develop new genera0ve downscaling methods, e.g., [Groenke et al., 2020]

 
q  Learning under non-sta9onarity

q  Learn level of non-sta0onarity over 0me and space



ADAPTATION
AI for Extreme Weather and Cascading Hazards 

Hurricane track predic.on via fused CNNs 
[Giffard-Roisin et al., Climate Informaacs 2018; Fronaers 2020]

Forecas.ng Indian Summer Monsoon 
precipita.on extremes
[Saha et al. Climate Informaacs 2019; 2020] with India 
Meteorological Department (IMD)

Avalanche detec.on using CNN; VAE
[Sinha et al., Climate Informaacs 2019; 2020] with Météo-
France

Hurricane track predic.on via fused CNNs 
[Giffard-Roisin et al., Fron.ers 2020]



ADAPTATION
AI for Extreme Weather and Cascading Hazards 

• Genera9ve AI for weather forecas9ng
• Build on the 2023 “AI revolu.on” in weather
• Extend the benefits of diffusion models
[Landry, Charantonis & Monteleoni, Month. Weather Rev. 2024]

• Precipita9on
• Key factor in many extreme events (flood/wildfire)
• Difficult to measure, especially over water/ice
• Discrete in .me and space

• Extreme events
• Such “outlier” events/hazards have outsized societal impacts
• Rare à class-imbalance in historical data
• Reanalysis data doesn’t capture all the extreme events
• The AI models are trained to predict averages, not extremes

Hurricane track predic.on via fused CNNs 
[Giffard-Roisin et al., Fron.ers 2020]



MITIGATION 
Reducing carbon emissions

Accelerate green energy transi0on
• AI-driven forecasang of solar, wind
Week-ahead solar irradiance forecas=ng via deep 
sequence learning [Sinha et al., CI 2022] w/ NREL
• AI to downscale climate model outputs

• [Harilal et al., NeurIPS workshop 2022] 
with NREL & IIT Roorkee 

• EDF projects: future wind & PV farms
AI-modeling effects of land(-use)-change on 
CO2 emissions

• Currently large uncertain=es in impacts
• Generate new scenarios with AI

Reduce compute needed for weather and 
climate modeling

• Once trained, AI is significantly faster at 
predic=on than physical models



Downscaling climate model simula=ons

Global climate model simula0ons are 
coarser scale (in space and 0me) than 
needed for mul0ple tasks in:

• Climate change adapta.on
• Climate change mi.ga.on
• Projec.ng long-term impacts

Approach: Use genera0ve AI to 
downscale climate model data to 
relevant scales

[Gebelman, et al., Science Advances, 2022]



ClimAlign: Unsupervised, generative downscaling

General downscaling technique via domain alignment with normalizing flows 
[AlignFlow: Grover et al., AAAI 2020][Glow: Kingma & Dhariwal, NeurIPS 2018]

• Unsupervised: do not need paired maps at low and high resolu0on
• Genera3ve: can sample from posterior over latent representa0on OR sample 

condi0oned on a low (or high!) resolu0on map
• Intepretable, e.g., via interpola0on

[Groenke, Madaus & Monteleoni, Climate Informa.cs 2020]



Why can’t we just use existing AI algorithms?

● Climate change applications involve geospatial data evolving with time
○ Observation data that has been gridded over the globe using data assimilation

○ Simulations output by physics-driven models (NWP, GCM, RCM)

● These are tensors of real-values over latitude, longitude, time, 
 and possibly over multiple climatological variables

● Computer Vision algorithms for “spatiotemporal data,” rely on 
properties of video data that do not generalize well to geospatial data
○ e.g., depth, edges, and “objects”

○ vs. ephemeral patterns in fluids
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STINT: Self-supervised Temporal Interpola7on
[Harilal, Hodge, Subramanian, & Monteleoni, 2024]

State-of-the-art Computer Vision for 
temporal interpola.on of video uses 
Op.cal Flow. 
This is problema.c on geospa.al data



• Robustify climate model ensemble 
forecasts 
• Online learning for non-stationary 

spatiotemporal data  [Multiple papers e.g., 
AAAI 2012, ALT 2020]

• Generative AI for ensemble generation

• Projecting long-term sea-level rise
• NASA: AI-fusion of climate model 

ensembles to predict future satellite 
altimetry [AGU 2022, ICLR 2023 
workshop] – with NCAR, CU Boulder

• Projecting long-term carbon emissions
• Extend ML models for carbon-flux to long-

term

IMPACTS
AI for Understanding and Predic.ng Climate Change

UCAR Science Educa8on



Our research also addresses open problems 
in Machine Learning

q Online learning with spa9otemporal non-sta9onarity

q Predic9on at mul9ple 9mescales simultaneously

q Anomaly detec9on with limited supervision 

q Tracking highly-deformable paMerns

à  Posi9on-Paper: Innova9on in Applica9on-Driven Machine Learning 
       [Rolnick et al., ICML 2024]



Online learning with spa=otemporal 
non-sta=onarity
Learning when the target concept can vary over 9me, 
and mul9ple other dimensions (e.g., la9tude, longitude)
• We can exploit local structure in space and 0me
• We can learn the level of non-sta0onarity in 0me and space
 [McQuade & M, AAAI 2012] extended [M & Jaakkola, NeurIPS 2003; 
 M et al. SAM 2011] to mul.ple dimensions

Distributed online learning: new ML framework
 New “regret” theore.cal analysis [Cesa-Bianchi, Cesari, & M, ALT 2020]

    Predic9on at mul9ple 9mescales simultaneously 
 Applica0ons to both climate science, and financial vola0lity
 [McQuade & M, CI 2015; SIGMOD DSMM 2016]



Long-term goals

Cascading Hazards
•  Goal: move beyond individual weather extremes, to how they couple
•  With massive wildfires everywhere, there is extreme urgency!

Climate Justice
•  Our research should always help increase climate equity
•  Ultimately, we should strive for approaches to help UNDO the legacy of 

climate IN-justice
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“Many majority-
Black parts of the 
Southeast [USA] 
are relatively far 
from radar sites, 
meaning that it’s 
harder to gather 
information about 
storms impacting 
these areas.”

Credit: Jack Sillin, in 
[McGovern et al., 
Environmental Data 
Science, 2022]



AI for Climate Data Equity
 
● Train models in high-data regions and apply them in low-data regions

○ Can evaluate them against supervised learning models in high-data regions

○ Can fine-tune them using the limited data in the low-data regions

● Contribu9on to climate data equity
○ Local scales (e.g. legacy of environmental injus0ce in USA)

■ Learn “virtual sensors”

○ Global scales: 

■ Global North historically emibed more carbon; Meanwhile there’s typically more data there

■ Global South is suffering the most severe effects of the resul.ng warming
22
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 Cheng Tang, Amazon

          
 

          

Thank you!

Climate and Machine Learning Boulder (CLIMB)



ARCHES:  AI Research for Climate Change and Environmental Sustainability



@envdatascience

An interdisciplinary, open access journal dedicated to the poten0al of 
ar0ficial intelligence and data science to enhance our understanding of 
the environment, and to address climate change.

  Data and methodological scope: Data Science broadly defined, including: 
  Machine Learning; Ar8ficial Intelligence; Sta8s8cs; Data Mining; Computer Vision; Econometrics

Environmental scope, includes: 
Water cycle, atmospheric science (including air quality, climatology, meteorology, atmospheric chemistry & 
physics, paleoclimatology)
Climate change (including carbon cycle, transporta8on, energy, and policy)
Sustainability and renewable energy (the interac8on between human processes and ecosystems, including 
resource management, transporta8on, land use, agriculture and food)
Biosphere (including ecology, hydrology, oceanography, glaciology, soil science)
Societal impacts (including forecas8ng, mi8ga8on, and adapta8on, for environmental extremes and hazards)
Environmental policy and economics

www.cambridge.org/eds



Environmental Data Science 
Innovation & Inclusion Lab 

NSF’s newest data synthesis center, 
hosted by the University of Colorado Boulder & CIRES, 

with key partners CyVerse & the University of Oslo

A national accelerator linking data, discovery, & decisions


