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® Loss of 2 lives. 1000 homes and 20 businesses were destroyed
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® Thomas Fire destroyed 1063 structures and led to poor air quality

® |Intense rainfall as the fire was nearing containment produced a debris flow
e 23 lives and over 130 homes were lost
o



new solutions this creates for nations, business and for everyday life, we must also
think about how to maximize the gains for society and our environment at large.”




Climate Informatics is based on the vision that ’{@I.\
Machine learning can shed light on climate change

2008
2010
2011
2012
2013
2014
2015
2018
2021
2022
2023
2024

Started research on Climate Informatics, with Gavin Schmidt, NASA

“Tracking Climate Models” [Monteleoni et al., NASA CIDU, Best Application Paper Award]
Launched International Workshop on Climate Informatics, New York Academy of Sciences
Climate Informatics Workshop held at NCAR, Boulder, for next 7 years

“Climate Informatics” book chapter [M et al., SAM]

“Climate Change: Challenges for Machine Learning,” [M & Banerjee, NeurlPS Tutorial]
Launched Climate Informatics Hackathon, Paris and Boulder

World Economic Forum recognizes Climate Informatics as key priority
Computing Research for the Climate Crisis [Bliss, Bradley @ M, CCC white paper]

First batch of articles published in Environmental Data Science, Cambridge University Press

12t Conference on Climate Informatics, Cambridge, UK
13t Conference on Climate Informatics, Turing Institute, London



Exponential growth in Environmental Data Science

Environmental Data Science submissions received vs. Year
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Al Research for Climate Change and Environmental Sustainability

Extreme weather

ADAPTATION Short-term

Cascading hazards

Energy transition

MITIGATION Medium-term

Land-use change

Carbon emissions

IMPACTS Long-term

Sea-level rise




Approach: Exploit all available data

d Simulated data generated by physics-based models
(1 Numerical Weather Prediction (NWP) models
(1 General Circulation Models (GCM)
(J Regional Climate Models (RCM)

(1 Reanalysis data

J Gridded data products from data assimilation:
applies physical laws to observations

(J Observation data

J Satellite remote sensing data
d In-situ data

Horizontal Grid

(Latitude-Longitude) |*

Vertical Grid
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Al Methods

1 Semi-supervised, unsupervised, self-supervised learning

(d New methods for downscaling (super-resolution), interpolation of geospatial data
(d New pretext tasks for self-supervised learning, e.g., STINT [Harilal et al., 2024]
(J Regularization via multi-tasking over variables, lead-times

J Generative Al

J VAE, Normalizing Flows
 Diffusion models
(J Develop new generative downscaling methods, e.g., [Groenke et al., 2020]

d Learning under non-stationarity
d Learn level of non-stationarity over time and space



ADAPTATION

Al for Extreme Weather and Cascading Hazards

Tievel A Hurricane track prediction via fused CNNs
(;a;gtﬁg:)- [Giffard-Roisin et al., Climate Informatics 2018; Frontiers 2020]
500 hPa -
Forecasting Indian Summer Monsoon
700 hPa - precipitation extremes
[Saha et al. Climate Informatics 2019; 2020] with India

Meteorological Department (IMD)

Avalanche detection using CNN; VAE

[Sinha et al., Climate Informatics 2019; 2020] with Météo-
France

Hurricane track prediction via fused CNNs
[Giffard-Roisin et al., Frontiers 2020]



ADAPTATION

Al for Extreme Weather and Cascading Hazards

25°x 25°

Pressure
level A
(~altitude)

225 hPa -

* Generative Al for weather forecasting
e Build on the 2023 “Al revolution” in weather
e Extend the benefits of diffusion models
[Landry, Charantonis & Monteleoni, Month. Weather Rev. 2024]

* Precipitation
» Key factor in many extreme events (flood/wildfire)

« Difficult to measure, especially over water/ice
* Discrete in time and space

500 hPa 4

700 hPa A

e Extreme events

e Such “outlier” events/hazards have outsized societal impacts
e Rare = class-imbalance in historical data
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Hurricane track prediction via fused CNNs . T , ik
[Giffard-Roisin et al., Frontiers 2020] eanalysis data doesn’t capture all the extreme events

 The Al models are trained to predict averages, not extremes



MITIGATION

Reducing carbon emissions

Accelerate green energy transition
e Al-driven forecasting of solar, wind

Week-ahead solar irradiance forecasting via deep
sequence learning [Sinha et al., Cl 2022] w/ NREL
* Al to downscale climate model outputs

e [Harilal et al., NeurIPS workshop 2022]
with NREL & IIT Roorkee

* EDF projects: future wind & PV farms

Al-modeling effects of land(-use)-change on
CO, emissions

e  Currently large uncertainties in impacts

e Generate new scenarios with Al
Reduce compute needed for weather and
climate modeling

Once trained, Al is significantly faster at
prediction than physical models




Downscaling climate model simulations

Global climate model simulations are
coarser scale (in space and time) than
needed for multiple tasks in:

* Climate change adaptation

e Climate change mitigation

* Projecting long-term impacts

Approach: Use generative Al to
downscale climate model data to
relevant scales
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Phenomenon space scale

[Gettelman, et al., Science Advances, 2022]

Earth circumference



ClimAlign: Unsupervised, generative downscaling

[Groenke, Madaus & Monteleoni, Climate Informatics 2020]
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General downscaling technique via domain alignment with normalizing flows
[AlignFlow: Grover et al., AAAI 2020][Glow: Kingma & Dhariwal, NeurIPS 2018]
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* Unsupervised: do not need paired maps at low and high resolution

* Generative: can sample from posterior over latent representation OR sample
conditioned on a low (or high!) resolution map

 Intepretable, e.g., via interpolation



Why can’t we just use existing Al algorithms?

o Climate change applications involve geospatial data evolving with time

o Observation data that has been gridded over the globe using data assimilation

o Simulations output by physics-driven models (NWP, GCM, RCM)

o These are tensors of real-values over latitude, longitude, time,
and possibly over multiple climatological variables

o« Computer Vision algorithms for “spatiotemporal data,” rely on
properties of video data that do not generalize well to geospatial data

o e.g., depth, edges, and “objects”
o Vvs. ephemeral patterns in fluids

15



STINT: Self-supervised Temporal Interpolation

[Harilal, Hodge, Subramanian, & Monteleoni, 2024] SuperSloMo STint Ground Truth
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State-of-the-art Computer Vision for
temporal interpolation of video uses
Optical Flow.

This is problematic on geospatial data




IMPACTS
Al for Understanding and Predicting Climate Change

* Robustify climate model ensemble
forecasts

* Online learning for non-stationary
spatiotemporal data [Multiple papers e.g.,
AAAI 2012, ALT 2020]

* Generative Al for ensemble generation

Ozone layer Solar energy

Upper-level winds

ssssssss

* Projecting long-term sea-level rise

e NASA: Al-fusion of climate model
ensembles to predict future satellite
altimetry [AGU 2022, ICLR 2023
workshop] — with NCAR, CU Boulder

* Projecting long-term carbon emissions

 Extend ML models for carbon-flux to long-
term

« Atmospheric chemistry
« Evaporation
« Outgoing heat

UCAR Science Education



Our research also addresses open problems
in Machine Learning

- Online learning with spatiotemporal non-stationarity
1 Prediction at multiple timescales simultaneously

J Anomaly detection with limited supervision
 Tracking highly-deformable patterns

- Position-Paper: Innovation in Application-Driven Machine Learning
[Rolnick et al., ICML 2024]



Online learning with spatiotemporal
non-stationarity

Learning when the target concept can vary over time, °
and multiple other dimensions (e.g., latitude, longitude)
* We can exploit local structure in space and time AN
* We can learn the level of non-stationarity in time and space Pz
[McQuade & M, AAAI 2012] extended [M & Jaakkola, NeurlPS 2003; o
M et al. SAM 2011] to multiple dimensions e

Distributed online learning: new ML framework

New “regret” theoretical analysis [Cesa-Bianchi, Cesari, & M, ALT 2020] 5
t-30 l
.. : : . AR - N L PEIEN LY
Prediction at multiple timescales simultaneously t | @l
Applications to both climate science, and financial volatility ¢ + 30d l
[McQuade & M, CI 2015; SIGMOD DSMM 2016]

t +60d 3%

‘ = Prediction Initiated {f: Prediction Evaluated



Long-term goals

Cascading Hazards
. Goal: move beyond individual weather extremes, to how they couple

. With massive wildfires everywhere, there is extreme urgency!

Climate Justice
. Our research should always help increase climate equity

. Ultimately, we should strive for approaches to help UNDO the legacy of
climate IN-justice
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“Many majority-
Black parts of the
Southeast [USA]
are relatively far
from radar sites,
meaning that it’s
harder to gather
information about
storms impacting

Are Black Americans Underserved b

Network?

] Excellent Radar Coverage &

Good Radar Coverage

these areas.”

Credit: Jack Sillin, in
[McGovern et al.,

Environmental Data
Science, 2022]

Weather radars detect storms
by sending beams of energy out
into the atmosphere and
listening for energy that
bounces back off rain, snow,
hail, and anything else in the
atmosphere.

The farther a storm is from a
radar site, the less information |-
we can get about it due to the |
beam height rising farther off
the ground, and the beam width|
expanding leading to lower
resolution.

High resolution radar data near
the ground can be critical in
many situations such as when
severe thunderstorms and
tornadoes threaten.

Many majority-Black parts of
the Southeast are relatively far
from radar sites, meaning that
it's harder to gather information
about storms impacting these

areas.
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Al for Climate Data Equity

e Train models in high-data regions and apply them in low-data regions
o Can evaluate them against supervised learning models in high-data regions

o Can fine-tune them using the limited data in the low-data regions

o Contribution to climate data equity
o Local scales (e.g. legacy of environmental injustice in USA)
s Learn “virtual sensors”

o Global scales:
s Global North historically emitted more carbon; Meanwhile there’s typically more data there

s Global South is suffering the most severe effects of the resulting warming



Thank youl!
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Research. Innovation. Sustainability.
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o ENVIRONMENTAL
DATA SCIENCE

An interdisciplinary, open access journal dedicated to the potential of
artificial intelligence and data science to enhance our understanding of
the environment, and to address climate change.

Data and methodological scope: Data Science broadly defined, including:
Machine Learning; Artificial Intelligence; Statistics; Data Mining; Computer Vision; Econometrics

Environmental scope, includes:

Water cycle, atmospheric science (including air quality, climatology, meteorology, atmospheric chemistry &
physics, paleoclimatology)

Climate change (including carbon cycle, transportation, energy, and policy)

Sustainability and renewable energy (the interaction between human processes and ecosystems, including
resource management, transportation, land use, agriculture and food)

Biosphere (including ecology, hydrology, oceanography, glaciology, soil science)

Societal impacts (including forecasting, mitigation, and adaptation, for environmental extremes and hazards)

Environmental policy and economics
Q@envdatascience

OPEN aACCESS

www.cambridge.org/eds
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