

Heterogenous plant data from data integration practices to analysis perspectives.

Intégration de données hétérogènes de plantes : des pratiques d'intégration aux perspectives d'analyse

Motivation: Increased sustainability of plant production is needed

- Less arable land
- Increasing world population

 Climate change (extreme weather conditions, pests and diseases)

12 of the 17 UN Sustainable Development Goals (SDGs) address agriculture directly and indirectly

Genome / Environment / Phenome

Step 1: phenotyping data standardization and exchange

Heterogeneous and multidimensional

- Variability of experimental sites, designs, conditions
- Collected data images, physical measurements, chemical assays, molecular biology assays, environmental,...

Dispersed

No comprehensive public archive for phenotypic data

Poorly annotated

 Weaknesses in standards for data and metadata description

Plant data standards for FAIR

Semantic

- Description of the data
- Controlled vocabularies: term name and definitions
- Ontologies: semantic links between terms
- Biologist driven

Structure

- Formatting and Organizing the data
- Data Models

- Standards : CSV, VCF, GFF, MIAPPE (www.miappe.org) , etc...
- Biologist & Computer scientist driven

Technical

- Data integration and sharing
- Interoperability: tools and systems
 - GA4GH

- Breeding API <u>www.brapi.org</u>
- Computer scientist driven

Phenotype <u>Semantic</u> Standard: Ontologies

- Describing traits/features in specific plant species
- Crop Ontology Trait + Method + Scale Semantic model

Variable identification: Plant height example

...There is an uncountable number of combinations...

Each trait, method and unit has to be identified if we want to share and reuse data

T1: Plant Height

M5: Highest pixel corresponding to plant

U3: pixel

Slide from L. Cabrera-Bosquet

Phenotype Structure Standard

Minimal Information About Plant Phenotyping Experiment

www.miappe.org

- Many stakeholders
- Open Community
- Crops and woody plants
- Biologist friendly
 - Clear definitions and examples
 - Excel templates
 - Trainings
- Computer scientist friendly
 - Explicit Data Model
 - ISA-Tools
 - Breeding API (BrAPI)
 - Phenotyping Experiment Ontology (PPEO) using OWL (http://agroportal.lirmm.fr/ontologies/PPEO)

MIAPPE 1.1 Overview Dataset

6 randomized blocks

1 observation unit = one tree

No treatment

6 replicates defined by their position in each block: row and column

MIAPPE V1.1 Overview

Investigation: whole dataset Investigation Metadata **Investigation** (Identifier **Study**: one experiment in one location Contact, etc) Parameter Value for one to several year Publication Assay ie Observed Variable: Level + Environment Study Environment Parameter (Growth Facility) Trait + Method + Scale/Unit Biological Material Study Metadata (Identifier, Timing, Metadata Location, Design) (Organism, Genus, Material Source, etc Crop Ontology Event Date Event for agricultural data **Biological** Biological Material Preprocessing Treatment Material Treatment Observation unit Observed Variable 1-1 Observed variable Metadata Metadata (Trait, Method, (Processing, etc) Scale, etc) Data file

Plant Phenotyping Life cycle

Data acquisition

- Traceability
- Raw measures
- Data Cleaning
- Platform IS (Emphasis IS, PHIS, ...)
- Reproducibility
- Traceability
- Provenance

Data computation

- New computation for each scientific question
- One raw dataset → many computed datasets

Data publication

- One Data
 Publication by datasets.
- Platform IS
 - Raw
- FAIR Data Repositories
 - Computed

(b) 0.6 345 599 816	Genotype	traitement	Fusariose
Data	oisson	low input	5
	oisson	r	
Date	Charger	low input	1
	Charger	high N	2

Variety charger

Knowledge

practice

Data Integration

Phenotype <u>Technical</u> Standard

- Breeding API http://brapi.org/
- International collaboration
 - Standard Open Web Service API, REST
 - •Information Exchange, Main target: Breeding
 - Excellence in Breeding platform (CGIAR)
- Major INRA & Elixir Contribution
 - Phenotyping specification

Selby *et al. Bioinformatics* (2019), doi.org/10.1093/bioinformatics/btz190

Phenotype <u>Technical</u> Standard

FAIDARE

Sources

Types

URGI GnpIS (12,058)

□ VIB PIPPA (679)

IBET BioData (61)

Germplasm (13,078) Phenotyping Study (894) Genotyping Study (15)

CIRAD TropGENE (722)

 EBI European Nucleotide Archive (467)

- Connect data repositories and tools:
 - Genotype visualization (Flapjack)
 - Studies graph preview and filtering
 - **•BrAPPS**: Tools integrable in any BrAPI compliant System
 - https://www.brapi.org/brapps.php
 - •R analysis environment
 - Field data capture
 - ◆FAIR Data discovery → Elixir FAIDARE

https://urgi.versailles.inra.fr/faidare/

Requires: D3, iQuen

Study Comparison BrApp Example

FAIDARE (FAIR Data-finder for Agronomic REsearch)

https://urgi.versailles.inra.fr/faidare/

- Open plant data repositories federation
- How to join us
 - Create your own BrAPI endpoint (documentation: https://brapi.org/)
 - Reference your BrAPI endpoint in FAIDARE (documentation: https://urgi.versailles.inra.fr/faidare/join)
- Information & Support
 - Elixir Plant Community: https://www.elixir-europe.org/communities/plant-sciences
 - INRA URGI: <u>urgi-contact@inra.fr</u>

Create search criteria - Germplasm

Create search criteria - Trait

Find data

Filter data

Data Access

Data access

FAIDARE web services

https://urgi.versailles.inra.fr/faidare/swagger-ui.html

IA & New analysis tech for Data Integration

Variety charger is resistant to Charger fusariose under intensiv cultural Triticum aestivum practice **Resistant under** intesiv cutural practice **Fusariose Fusariose** NA NA Genotyping **Phenotyping Studies Studies** Germplasm Permanent Unique Identifier (DOI) **AccessionNumber Observation** Taxon Units *Institute* (→ Namespace) (Plants, Plots, **Observations Observation Variables** (Env, Pheno, Trait Methode

Scale

analysis perspectives.

M2 Master Internship on Text mining

URGI / Bibliome partnership

SCIENCE & IMPACT

• https://urgi.versailles.inra.fr/About-us/News/Text-mining-data-integration-web-devel-m2-internship

IA & New analysis tech for Data Integration

Known analysis approaches

GWAS Analysis Statistical Analysis Images workflow

IA & New analysis tech for Data Integration

MIAPPE Semantic: RDA RDFENO

- MIAPPE OWL Implementation
 - First draft:
 https://github.com/MIAPPE/MIAPPE-ontology
- Brapi 2 MIAPPE RDF workflow
 - http://ist.blogs.inra.fr/wdi/phenotypesas-rdf/ (www.wheatIS.org data standards)
 - JSON LD based
- Publication on MIAPPE.ORG
- Wheat dataset
 - http://dx.doi.org/10.15454/1.448966621
 6568333E12

Run Query

IA & New analysis tech for Data Integration

THANK YOU

