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Distributions are everywhere

Distributions are everywhere in machine learning
e Images, vision, graphics, Time series, text, genes, proteins.
e Many datum and datasets can be seen as distributions.
e Important questions:

e How to compare distributions?
e How to use the geometry of distributions?

e Optimal transport provides many tools that can answer those questions.

Illustration from the slides of Gabriel Peyré.
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Optimal transport

e Problem introduced by Gaspard Monge in his memoire [Monge, 1781].

e How to move mass while minimizing a cost (mass + cost)

e Monge formulation seeks for a mapping between two mass distribution.

e Reformulated by Leonid Kantorovich (1912-1986), Economy nobelist in 1975
e Focus on where the mass goes, allow splitting [Kantorovich, 1942].

e Applications originally for resource allocation problems
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Optimal transport between discrete distributions

Distributions Matrix C OT matrix y

b |
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[ Source ps
I Target pe

Kantorovitch formulation : OT Linear Program
When 11, =37, a;idxs and py = Dot bidye

W (ps, pe) = min {(T,C)F = ZTZ-,]-CZ-J}
43

TE(ps,pmt)

where C is a cost matrix with ¢; ; = c(x},x5) = [|x{ — x[|” and the constraints are
T(pts, i) = {T e RT)™*™|T1,, =a,T 1,, = b}

e Solving the OT problem with network simplex is O(n®log(n)) for n = ns = n,.

e W, (s, p1e) is called the Wasserstein distance (EMD for p = 1). /28
5
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Kantorovitch formulation : OT Linear Program
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e Solving the OT problem with network simplex is O(n®log(n)) for n = ns = n,.

o Wpy(us,pt) is called the Wasserstein distance (EMD for p = 1).
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Optimal transport between discrete distributions

OT matrix with samples
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Kantorovitch formulation : OT Linear Program
When j1s = 377 a;0xs and py = Y070 bidye

Wy (s, pe) = __min { ZTJCZJ}

TE(ps,pt)

where C is a cost matrix with ¢; ; = ¢(x},x5) = ||x] — x5||” and the constraints are

W(ps, ae) = {T € (®RF)"*"*| T1,, = a,T"1,, = b}

e Solving the OT problem with network simplex is O(n®log(n)) for n = ns = n,.

o Wpy(us,ut) is called the Wasserstein distance (EMD for p = 1).
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Entropic regularized optimal transport

Distributions Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2
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Entropic regularization [Cuturi, 2013]

Ty = argmin (T, C)r+ )\ZTi,j(log T;; — 1)
TE(ps,pt) i

e Regularization with the negative entropy of T'.

e Looses sparsity but smooth and strictly convex optimization problem.

e Can be solved efficiently with Sinkhorn’s matrix scaling algorithm with
ul® =1, K = exp(—C/)) and T = diag(u*)Kdiag(v*)

k) _ T (k-1) k) _ (k)
viV=bopK u , uw’/ =aoKv 6,28



Entropic regularized optimal transport

Distributions Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2
oo 8 ®
o, °
® o go

@ Source s
® Target u;

.. tk.

Entropic regularization [Cuturi, 2013]

Ty = arg min T,C). + A I i(logT;; — 1
F 3] 3]
TEM (s, pt) i.j

e Regularization with the negative entropy of T'.
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e Can be solved efficiently with Sinkhorn’s matrix scaling algorithm with

u® =1, K = exp(—C/)) and T = diag(u*)Kdiag(v*)

(k) _ T (k=1) (k) _ (k)
viV=boK u , uw’/ =aoKv 6,28



Wasserstein distance

Source distribution Divergences (scaled)

—_— W%

— w

— h(TV)

—— I, (sq. eucl.)

Target distributions

_~

Wasserstein distance
Wy (s, i) = min / Ix = ylI"v(x, y)dxdy = Ey)~nlllx = y[7] (1)
YEP Ja xa,
In this case we have c¢(x,y) = ||x — y|?
e AK.A. Earth Mover's Distance (W7) [Rubner et al., 2000].
e Useful between discrete distribution even without overlapping support.
e Smooth approximation can be computed with Sinkhorn [Cuturi, 2013].

e Wasserstein barycenter: i = argmin, >, wiW} (1, 1) 7/28



Wasserstein distance
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Optimal transport for machine learning

Occurences of OT+ML in Google Scholar

2500 A
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i WGAN : Arjovski et al.
>00 Sinkh : Cuturi
EMD : Rubner et al. inkhorn = Cutun

1990 1995 2000 2005 2010 2015 2020

Short history of OT for ML
e Proposed in in image processing by [Rubner et al., 2000] (EMD).
e Entropic regularized OT allows fast approximation [Cuturi, 2013].
e Deep learning/ stochastic optimization [Arjovsky et al., 2017].

e Generative models with diffusion/Schrddinger bridges. 8/28



Three aspects of optimal transport

Transporting with optimal transport

e Learn to map between distributions.
e Estimate a smooth mapping from discrete distributions.

e Applications in domain adaptation.

Divergence between histograms/empirical distributions

i e Use the ground metric to encode complex relations
\ between the bins of histograms for data fitting.
773 | 1NN e OT losses are non-parametric divergences between non
: :::}3:;}% overlapping distributions.
. e Used to train minimal Wasserstein estimators.
Divergence between structured objects and spaces

e Modeling of structured data and graphs as distribution.

° e OT losses (Wass. or (F)GW) measure similarity
@’7 between distributions/objects.

e OT find correspondance across spaces for adaptation.
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Mapping with optimal transport
Mapping with optimal transport from discrete samples

Optimal transport for domain adaptation
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Mapping with optimal transport

Distributions Classt OT Reg. Entropic OT

@ Source s
® Target

Mapping estimation
e Barycentric mapping using the OT matrix T" [Ferradans et al., 2014].
mr(x;) = argmin ZEJC(X, x5)

J
e Smooth entropic mapping [Seguy et al., 2017, Pooladian and Niles-Weed, 2021].

e Linear Monge mapping when data supposed Gaussian [Flamary et al., 2019].

e Estimation for W5 using input convex neural networks [Makkuva et al., 2020].
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Mapping with optimal transport

Distributions Classic OT (LP) Reg. Entropic OT

o, ‘. ® 0 @ P 5 @

@ Source s
@ Target u

.. tk.

Mapping estimation
e Barycentric mapping using the OT matrix T" [Ferradans et al., 2014].
mr(x;) = arg min ZTi’jc(x, x5)

J
e Smooth entropic mapping [Seguy et al., 2017, Pooladian and Niles-Weed, 2021].

e Linear Monge mapping when data supposed Gaussian [Flamary et al., 2019].

e Estimation for W5 using input convex neural networks [Makkuva et al., 2020].

10/28



Mapping with optimal transport

Distributions Classic OT (LP) Reg. Entropic OT

@ Source g
® Target

° ° ‘K.

Mapping estimation
e Barycentric mapping using the OT matrix T" [Ferradans et al., 2014].
mr(x;) = arg min ZTi’jc(x, x5)
* J
e Smooth entropic mapping [Seguy et al., 2017, Pooladian and Niles-Weed, 2021].

e Linear Monge mapping when data supposed Gaussian [Flamary et al., 2019].

e Estimation for W5 using input convex neural networks [Makkuva et al., 2020].

10/28



Mapping with optimal transport
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Mapping estimation
e Barycentric mapping using the OT matrix T" [Ferradans et al., 2014].
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Mapping with optimal transport
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Mapping estimation
e Barycentric mapping using the OT matrix T" [Ferradans et al., 2014].
e Smooth entropic mapping [Seguy et al., 2017, Pooladian and Niles-Weed, 2021].

oy Kuep(—lx—xi2A) |
m(x) = ~ - BERES with v sol. of Sinkhorn
>, viexp(—|lx —x4[[2/N)

e Linear Monge mapping when data supposed Gaussian [Flamary et al., 2019].
e Estimation for W> using input convex neural networks [Makkuva et al., 2020].
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Mapping with optimal transport

Source and target distributions Empirical means and covariances Linear Monge mapping
10 10 10

+  Source samples x X Source samples X Target samples x X
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Mapping estimation
e Barycentric mapping using the OT matrix T' [Ferradans et al., 2014].
e Smooth entropic mapping [Seguy et al., 2017, Pooladian and Niles-Weed, 2021].
e Linear Monge mapping when data supposed Gaussian [Flamary et al., 2019].
m(x) =mo + A(x —m;) with A =23 \ ')(L: 2)]32:
e Estimation for W> using input convex neural networks [Makkuva et al., 2020].
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Mapping with optimal transport

Source and target distributions Empirical means and covariances Linear Monge mapping
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Target samples
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Mapping estimation

e Barycentric mapping using the OT matrix T" [Ferradans et al., 2014].
e Smooth entropic mapping [Seguy et al., 2017, Pooladian and Niles-Weed, 2021].

e Linear Monge mapping when data supposed Gaussian [Flamary et al., 2019].
m(x) =my + A(x—my) with A=2372?053207 1/?
e Estimation for W2 using input convex neural networks [Makkuva et al., 2020].
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Mapping with optimal transport

/i

(@ Barycentric-OT ® Wi-LP (©) W2GAN (@) Our approach
Mapping estimation
e Barycentric mapping using the OT matrix T" [Ferradans et al., 2014].
e Smooth entropic mapping [Seguy et al., 2017, Pooladian and Niles-Weed, 2021].
e Linear Monge mapping when data supposed Gaussian [Flamary et al., 2019].

e Estimation for W5 using input convex neural networks [Makkuva et al., 2020].
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Histogram matching in images

Pixels as empirical distribution [Ferradans et al., 2014]
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Histogram matching in images

Image colorization [Ferradans et al., 2014]

Original X?

B

=
5
C

Proposed method




OT mapping for Image-to-lmage transla
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Principle
e Encode image as a distribution in a DNN embedding.
e Transform between images using estimated Monge mapping.

e Linear Monge Mapping (Wasserstein Style Transfer [Mroueh, 2019]).

Nonlinear Monge Mapping using input Convex Neural Networks
[Korotin et al., 2019].

Allows for transformation between two images but also style interpolation with
Wasserstein barycenters.
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main Adaptation problem

Amazon DLSR
“ ‘ N @
W h W

Domain Adaptation
o Classification problem with data coming from different sources (domains).
o Distributions are different but related.

o Labels only available in the source domain, but prediction is conducted in the
target domain.

o Objective : Train a classifier that performs well in the target domain
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Domain Adaptation
o Classification problem with data coming from different sources (domains).

Distributions are different but related.

Labels only available in the source domain, but prediction is conducted in the

target domain.

o Objective : Train a classifier that performs well in the target domain
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Optimal transport for domain adaptation

Dataset Optimal transport Classification on transported samples

&+

T

T, 0)

+0 Samples T, (x)
40 Samplesx!

— Classifier on T, (x})

+0 SamplesT,, (x})
Samples x!

Classifier onx;

Assumptions
1. There exist an OT mapping m in the feature space between the two domains.

2. The transport preserves the joint distributions:
P*(x,y) = P'(m(x),y).
3-step strategy [Courty et al., 2014, Courty et al., 2016]
1. Estimate optimal transport between distributions (use regularization).

2. Transport the training samples on target domain.

3. Learn a classifier on the transported training samples.
14 /28



Domain adaptation with optimal transport
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Extensions and related works

1
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Loss (9):
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+
lg(as) — g(=)II?
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e JDOT [Courty et al., 2017b] : Joint OT and target predictor estimation.

[Shen et al., 2018] : Wasserstein Distance Guided Representation Learning.
DeepJDOT [Damodaran et al., 2018, Fatras et al., 2021] : Deep learning JDOT.
[Montesuma and Mboula, 2021]: Multi-source DA by mapping to Wass. Bary.

[Gnassounou et al., 2023]: Convolutional Monge Mapping for Multi-source DA.
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Domain adaptation with optimal transport
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Extensions and related works

e JDOT [Courty et al., 2017b] : Joint OT and target predictor estimation.

[Shen et al., 2018] : Wasserstein Distance Guided Representation Learning.
DeepJDOT [Damodaran et al., 2018, Fatras et al., 2021] : Deep learning JDOT.

[Montesuma and Mboula, 2021]: Multi-source DA by mapping to Wass. Bary.

[Gnassounou et al., 2023]: Convolutional Monge Mapping for Multi-source DA.
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Optimal Transport as a distance between distributions
OT between histogram data

OT between empirical distributions
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Discrete distributions: Empirical vs Histogram

n n
Discrete measure:  u = E aibx;, X; €€, g a; =1
i=1 i=1

Lagrangian (point clouds) Eulerian (histograms)
e %
°
°
soa® m
am 00 x;
& o8
Q
e Constant weight: a; = % e Fixed positions x; e.g. grid
e Quotient space: Q", ¥, e Convex polytope X, (simplex):

{(ai)i > 0;3, ai = 1}
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Dictionary Learning and Principal Geodesics Analysis

xX X
KK e * &, *‘ A

XIRE DI RR
X KR[N A
0 & AR O] x| X[ XA

Euclidean Simplex: {23:1 AiDi, A € Eg} Wasserstein simplex: {P()\), A € 23}

Y X

Unsupervised learning on histogram data
e DL with Wasserstein distance [Sandler and Lindenbaum, 2011, Rolet et al., 2016]
e Nonlinear DL with Wasserstein barycenter [Schmitz et al., 2017]
e Geodesic PCA in Wasserstein space [Seguy and Cuturi, 2015, Bigot et al., 2017].
e Approximation using Wasserstein embedding [Courty et al., 2017a].
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Dictionary Learning and Principal Geodesics Analysis
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Unsupervised learning on histogram data
e DL with Wasserstein distance [Sandler and Lindenbaum, 2011, Rolet et al., 2016]
e Nonlinear DL with Wasserstein barycenter [Schmitz et al., 2017]
e Geodesic PCA in Wasserstein space [Seguy and Cuturi, 2015, Bigot et al., 2017].

e Approximation using Wasserstein embedding [Courty et al., 2017a].
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Multi-label learning with Wasserstein

- Flickr : street, parade, dragon Flickr : water, boat, ref ection, sun-shine
Eskimo dog Prediction : people, protest, parade Prediction : water, river, lake, summer;

Learning with a Wasserstein Loss [Frogner et al., 2015]

N
min S W (£6x), 1)
k=1

e Empirical loss minimization with Wasserstein loss.
e Multi-label prediction (labels 1 seen as histograms, f output softmax).
e Cost between labels can encode semantic similarity between classes.

e Good performances in image tagging.
18/28



Wasserstein Generative Adversarial Networks (WGAN)

\ — Density of real — MLP 512
— Density of fake 30
——  WGAN Critic
| 1 0 | [ B, L
Lo =
o4 ‘ — -y
02 \
\
00

— GAN Discriminator
o 7
0.5
-02 Vanishing gradients

Wasserstein estimate

) in regular GAN
04— pry ) ) 3 T T DDu 100000 200000 300000 400000 500000 600000
Generator iterations
Wasserstein GAN [Arjovsky et al., 2017]
. 1
min Wi (G#pz, pa),  s.t. z~N(0,1I) (2)

e Minimizes the distance between the true pq and generated data G# ..
e Better convergence in practice than classical GANs [Goodfellow et al., 2014].

e Wasserstein in the dual (separable w.r.t. the samples).

m&n sup Exnpg[0(x)] = Eanp. [0(G(2))]
peLipt

e Lipschitzness constrained or penalized [Gulrajani et al., 2017].

e State of the art for image generation with [Karras et al., 2019] (before diffusiqn).28



Wasserstein Generative Adversarial Networks (WGAN)

Wasserstein GAN [Arjovsky et al., 2017]
ngn Wi (G#pz, pa), st z~ N(0,1) (2)

Minimizes the distance between the true pq and generated data G# ..

Better convergence in practice than classical GANs [Goodfellow et al., 2014].

Wasserstein in the dual (separable w.r.t. the samples).

min sup Exrpg [#(%)] = Ezrnp. [0(G(2))]

¢€ELipl

Lipschitzness constrained or penalized [Gulrajani et al., 2017].

State of the art for image generation with [Karras et al., 2019] (before diffusion).
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Optimal Transport between spaces and structures

Gromov-Wasserstein and extensions

Applications of OT between graphs
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Gromov-Wasserstein and extensions

ldx (z,a") = dy (y,4)
Inspired from Gabriel Peyré
GW for discrete distributions [Memoli, 2011]
GWh (s, ) =  min Di — D5y |PTi s Thea
o (s pie) Telion ) Z;;z | 7T

with s =3, a;idxs and py = Z], bj51§ and D, i = ||x] — x‘i’.||,D;’l = ij —x!||
e Distance between metric measured spaces : across different spaces.
e Search for an OT plan that preserve the pairwise relationships between samples.
e Entropy regularized GW proposed in [Peyré et al., 2016].

e Fused GW interpolates between Wass. and GW [Vayer et al., 2018].
20/28



Gromov-Wasserstein and extensions

Q bj

Y

FGW for discrete distributions [Vayer et al., 2018]
FGWh (s, pit) = min Z (1 =a)Cf; + alDs g — D)%) Ty 5 T

Tel(ps,pt) 4
gk

with 1, = 52, aides and = 5, b;8,0 and Dy = [xd — xi ], D, = [} — x{|

e Distance between metric measured spaces : across different spaces.
e Search for an OT plan that preserve the pairwise relationships between samples.
e Entropy regularized GW proposed in [Peyré et al., 2016].

e Fused GW interpolates between Wass. and GW [Vayer et al., 2018].
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Gromov-Wasserstein between graphs

a;

DS } =2 hib(, a)

SV aa = X hida,

¥ — .
-0, ‘{? }NX_Zihldmi
e 0@
Graph as a distribution (D, F, h)
e The positions x; are implicit and represented as the pairwise matrix D.

e Possible choices for D : Adjacency matrix, Laplacian, Shortest path, ...

XX

Shortest path
matrix

G x
X
) + Adjacency
matrix 2 .
-—> 1
x
X X3
x

o

e The node features can be compared between graphs and stored in F.

e h; are the masses on the nodes of the graphs (uniform by default). 21/28



Applications of (F)GW

Barycenter/averaging of labeled graphs [Vayer et al., 2018]

Noiseless graph Noisy graphs samples

SRS TGRS
SESRE S e

Shape matching between surfaces [Solomon et al., 2016, Thual et al., 2022]

Source Targets
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Shape matching between surfaces [Solomon et al., 2016, Thual et al., 2022]

Source Targets
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Applications of (F)GW

Barycenter/averaging of labeled graphs [Vayer et al., 2018]

Noiseless graph Noisy graphs samples Barycenter
Shape matching between surfaces [Solomon et al., 2016, Thual et al., 2022]

Training (cross-validated grid-search) Test  Baseline correlation Aligned correlation

300+ Source ) Target Source contrast k Source contrast k Actual
training contrasts subject S subject mapped on target mesh  target contrast k
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Graph Dictionary Learning

GDL unmixing w® with A = 0.001
\’ o Class1 . i .
Class 2 min d?,,‘(ﬂ( L4 A flju ).C) K %
7
<

Class 3

Representation learning for graphs

e Learn a dictionary {6}1 of graph templates to describe a continuous manifold.

e The representation is learned by minimizing the (F)GW distance between the
graph reconstruction from the embedding in the dictionary.

Online Graph Dictionary learning : Linear model [Vincent-Cuaz et al., 2021].

C= > w;C;

GW Factorization : Nonlinear (GW barycenter) model [Xu, 2020].

e Dictionary for structured prediction with GW bary. [Brogat-Motte et al., 2022].
23/28



Graph Dictionary Learning

Examples GDL unmixing w with A = 0.001
el \’ o Class1 e o
5 Class 2 mindy,,(B({L nd2,).C)

Class 3

Representation learning for graphs

e Learn a dictionary {61}z of graph templates to describe a continuous manifold.

e The representation is learned by minimizing the (F)GW distance between the
graph reconstruction from the embedding in the dictionary.

Online Graph Dictionary learning : Linear model [Vincent-Cuaz et al., 2021].

GW Factorization : Nonlinear (GW barycenter) model [Xu, 2020].
C = argming >, wiGW(C, C;)

e Dictionary for structured prediction with GW bary. [Brogat-Motte et al., 2022].
23/28



Graph Dictionary Learning

ro @M D S LSt & L
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Representation learning for graphs

e Learn a dictionary {6}1 of graph templates to describe a continuous manifold.

e The representation is learned by minimizing the (F)GW distance between the
graph reconstruction from the embedding in the dictionary.

Online Graph Dictionary learning : Linear model [Vincent-Cuaz et al., 2021].

GW Factorization : Nonlinear (GW barycenter) model [Xu, 2020].

e Dictionary for structured prediction with GW bary. [Brogat-Motte et al., 2022].

f(x) = C(x) = argming Y, wi(x)GW (C, C)
23/28



FGW for a pooling layer in GNN

TFGW layer
; - (C1,Fy,hy)
0.2 i v

0.2 EE—
i (] A—"TH [E
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" y . ~
Ci | (C,,gzbu(F,),h,)‘::: ----- > FGW, ——> | | - i
: MLP
5. -

fon
. _ } A ]
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Template based FGW layer (TFGW) [Vincent-Cuaz et al., 2022]

e Principle: represent a graph through its distances to learned templates.
e learnable parameters are illustrated in red above.
e New end-to-end GNN models for graph-level tasks.

e Sate-of-the-art (still!) on graph classification (1x#1, 3x#2 on paperwithcodzeL?./28
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Optimal Transport for Machine Learning
e Very dynamic community (NeurlPS OTML workshop every 2 years).
e Distributions are everywhere, and geometry can help.
e OT can be used to map, find correspondances and measure similarity.
e Many extensions: sliced, unbalanced, multi-marginal, ...

What about the next ten years ?
e OT is here to stay, it is a tool that can be adapted/relaxed.

e We need better solvers (faster, more scalable, more robust).
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Python code available on GitHub:
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Python code available on GitHub:
https://github.com/Python0T/POT
e OT LP solver, Sinkhorn (stabilized, e—scaling, GPU)
e Domain adaptation with OT.

==

e Barycenters, Wasserstein unmixing.
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e Wasserstein Discriminant Analysis.

—

Tutorial on OT for ML: \
http://tinyurl.com/otml-isbi \
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Papers available on my website:
https://remi.flamary.com/
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https://github.com/PythonOT/POT
http://tinyurl.com/otml-isbi
https://remi.flamary.com/

OTGame (OT Puzzle game on android)

1
'@ Standard game 1/9 Timer:19s New

https://play.google.com/store/apps/details?id=com.flamary.otgame 28 /28
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