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Generative modelling objective

I Objective: Learn and sample from a model of the true underlying data
distribution p∗ given a dataset {x1, . . . , xn} where xi ∈ RP , with P � 1.

I Two-steps
I Specify a class of model {pθ , θ ∈ Θ}.
I Find the best θ̂n by maximizing the likelihood

θ̂n = arg max
θ

n∑
i=1

log pθ(xi) .
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Latent variable modelling

I Autoencoders assume the existence of a latent variable whose dimension
D is much smaller than the dimension of the observation P .

I Attached to the latent variable z ∈ RD is a prior distribution π from which
we can sample from.

I The specification of the model is completed by specifying the conditional
distribution of the observation x given the latent variable z:

x | z ∼ pθ(x | z)

I The marginal likelihood of the observations is obtained by computing first
the joint distribution of the observation and the latent variable
pθ(x, z) = pθ(x | z)π(z) and then marginalizing w.r.t. the latent variable
z:

pθ(x) =

∫
pθ(x | z)π(z)dz .
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Data Generation with Latent variables

I Draw latent variable z ∼ π.
I Draw observation x | z ∼ pθ(x | z).
I Each region in the latent space is associated to a particular form of

observation.

Figure: Latent representation of the space for MNIST dataset
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Optimisation of the model

I Estimation Perform maximum likelihood estimation with stochastic
gradient techniques.

I Obtain unbiased estimators of the gradient of

pθ(x) =

∫
pθ(x | z)π(z)dz .

I Usually untractable !!
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Fisher’s Identity

I Idea: take advantage of Fisher’s identity:

∇θ log pθ(x) =

∫
∇θpθ(x, z)
pθ(x)

dz

=

∫
∇θ log pθ(x, z)

pθ(x, z)

pθ(x)
dz

=

∫
∇θ log pθ(x, z)pθ(z | x)dz .

I Gradient of incomplete likelihood of the observations is computed using
the complete likelihood (which is tractable !)

I However, we need to sample from the posterior pθ(z | x).
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Markov Chain Monte Carlo

I Idea: Build an ergodic Markov chain whose invariant distribution is the
target, known up to a normalization constant: pθ(z | x) ∝ π(z)pθ(x|z).

I Metropolis Hastings (MH) algorithms is an option
- Draw a proposal z′ from qθ(z′ | z, x)
- Accept / Reject the proposal with probability

αθ(z, z′) = 1 ∧
pθ(z′|x)qθ(z|z′, x)

pθ(z|x)qθ(z′|z, x) .

Figure: Markov chain targetting a correlated Gaussian distribution
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Markov Chain Monte Carlo

I Many recent advances for efficient MCMC methods, using Langevin
dynamics, Hamiltonian Monte Carlo.

I Pros: provide a theoretically sound framework to sample from

pθ(z | x) ∝ pθ(x | z)π(z)

(known up to a constant).
I Cons:

− mixing times in high dimensions.
− convergence assessment.
− multimodality (metastability).

I But Cons do not always outweights the Pros, see [HM19]
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Variational Inference

I Idea: Introduce a parametric family of probability distributions

Q = {qφ , φ ∈ Φ} .

I Goal minimize a divergence between qφ and the untractable posterior
pθ(· | x).

I For each observation x: different target
posterior pθ(z | x).

I Idea: use amortized Variational
Inference: x 7→ qφ(z | x) .

MCMC and Variational Inference for AutoEncoders
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Variational Inference

I Evidence Lower BOund (ELBO)

ELBO(θ, φ;x) =

∫
log

(
pθ(x, z)

qφ(z | x)

)
qφ(z | x)dz

=

∫
log

(
pθ(z | x)pθ(x)

qφ(z | x)

)
qφ(z | x)

= log pθ(x)−KL(qφ(z | x)‖pθ(z | x)) ≤ log pθ(x) .

I The ELBO is a lower bound of the incomplete data likelihood also referred
to as the evidence.

- the bound is tight if Q contains the true posterior pθ(· | x).

I The KL divergence measures the discrepancy when approximating the
posterior with the variational distribution.

- Can be replaced by f -divergence.

I The ELBO is tractable and can be easily optimized using the
reparameterization trick, crucial for stochastic gradient descent.
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Variational Auto Encoder

The Variational Auto Encoder (VAE) builds on the representational power of
(Deep) Neural Networks to implement a very flexible class of encoders qφ(z | x)
and decoders pθ(z | x).

I The encoder qφ is parameterized by a deep neural network, which takes as
input the observation x and outputs parameters for the distribution
qφ(· | x).

I The decoder pθ(z | x) is built symmetrically as a neural network which
takes as input a latent variable z and outputs the parameters of the
distribution pθ(x | z).
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”Classical” implementation

I In most examples, the dimension P of the observation x is large.

I The dimension of the latent space D is typically much smaller.

I The distribution of the latent variable denoted π is Gaussian.

I ... More sophisticated proposals can be considere: Gaussian mixture or
hierarchical priors.

I In the vanilla implementation the variational distribution qφ(· | x) is

qφ(z | x) = N(z;µφ(x), σφ(x) Id)

where µφ(x), σφ(x) are the output of a neural network taking the
observation x as input. This parameterization is often referred to as the
mean field approximation.

MCMC and Variational Inference for AutoEncoders
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Reparameterization trick

Optimization w.r.t. θ, φ of

ELBO(θ, φ;x) =

∫
log

(
pθ(x, z)

qφ(z | x)

)
qφ(z | x)dz .

I The gradient of the function

φ 7→
∫
h(x, z)qφ(z | x)dz

may be written as ∫
h(x, z)∇ log qφ(z|x)qφ(z|x)dz ,

I Monte Carlo estimation

M−1
M∑
i=1

h(x, Zi)∇ log qφ(Zi | x) , Zi ∼ qφ(· | x) .

I Problem: the variance of the vanilla unbiased estimator of this quantity is
generally very high !
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Reparameterization trick

I Reparameterization trick Assume there exists a diffeomorphism Vφ,x and a
distribution g easy to sample from such that

ε ∼ g , z = Vφ,x(ε) ∼ qφ(· | x) .

I Using the reparameterization, the ELBO writes

ELBO(θ, φ;x) =

∫
log

(
pθ(x, Vφ,x(ε))

qφ(Vφ,x(ε) | x)

)
g(ε)dε .

I Gradient is computed using the chain rule.
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Limitations of the VAE

The vanilla VAE suffers from some well known limitations.

I The mean-field approximation is usually believed to be too simple.

I Leads to overfitting or mode dropping (reverse KL used in Variational
Inference).

I Moreover, we can re write the ELBO as

ELBO(θ, φ;x) = Eqφ(·|x) [log pθ(x | z)]−KL (qφ(· | x)||π)

This can lead to an uninformed posterior approximation. Introduction of
β-VAE and Ladder Variational Autoencoders [HMP+16, SRM+16].
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Enriching the variational approximation

I To address the first issue presented, [RM15] suggests to improve the
variational mean-field using parameterized diffeomorphisms which increase
the flexibility of the distribution.

I Those diffeomorphisms are referred to as Normalizing Flows.

I Thanks to the recent advances in MCMC methods, flows [CDS18] and
other MCMC inspired methods come to enrich the variational distribution
[SKW15, Hof17].

I However, none of these approaches thoroughly combine MCMC and
Metropolis Hastings methods with Variational inference.
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MetFlow variational family

Our objective: construct a family of variational distributions, based on the
K-th marginal of a Markov chain with the following properties:

I The chain is initialized with the amortized variational mean-field
approximation, whose density is denoted m0

φ.

I The Markov chain has the true posterior pθ(z | x) as invariant distribution.

I The Markov kernel depend on learnable parameters also denoted φ which
can be adjusted.

We specify a framework in which the parameters of the Markov kernel and the
initial distribution are all learnable.

MCMC and Variational Inference for AutoEncoders



Introduction
Deep Latent Generative Models (DLGMs)

MetFlow and MetVAE: MCMC & VI
From classical to Flow-based MCMC

Experiments

Metropolis Hastings kernels
Variational inference with MetFlow family

Metropolis Hastings kernel

Denote by π the target distribution dependence in x and θ is implicit.

I innovation noise: (Uk)k∈N an i.i.d. sequence of random vectors in RDu ,
with density h.

I proposal mapping T : RD × RDu → RD.
I Algorithm:

I Propose a move Yk+1 = T (Zk, Uk+1) = TUk+1
(Zk).

I accept the move Xk+1 = Yk+1 with probability αUk+1
(Zk).

I Otherwise, set Xk+1 = Xk.

MCMC and Variational Inference for AutoEncoders
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Metropolis-Hastings kernel

I Qu: the Markov kernel conditional to the innovation noise as

Qu(z,A) = αu(z)δTu(z)(A) +
{

1− αu(z)
}

δz(A) .

I The Metropolis-Hastings kernel Mh is obtained by marginalizing w.r.t. to
the distribution of the innovation:

Mh(z,A) =

∫
Qu(z,A)h(u)du .

I The acceptance function αu is chosen to satisfy the reversibility condition

π(dz)Mh(z, dz′) = π(dz′)Mh(z′, dz) .

MCMC and Variational Inference for AutoEncoders
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Random Walk Metropolis

I Here Du = D, h = N(z; 0,Σ).

I Draw innovation Uk ∼ h.

I Propose a point
Yk+1 = TRWM

Uk (Zk) = Zk + Uk .

I Accept with probability

αRWM
u (z) = 1 ∧

(
π(TRWM

u (z))/π(z)
)
.

I Very simple and straightforward.... Slow mixing in high dimensions.

MCMC and Variational Inference for AutoEncoders
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Metropolis Adjusted Langevin Algorithm

I Idea: Inform MH proposal mapping with target distribution.

I Here Du = D, h = N(z; 0, Id). Assume that z 7→ log π(z) is differentiable
and denote by ∇ log π(z) its gradient. At each step k,

- Draw innovation Uk ∼ h.
- Propose

Yk+1 = TMALA
Uk

(Zk) = Zk + Σ∇ log π(Zk) +
√

2Σ1/2Uk .

- Accept with probability

αMALA
u (z) = 1 ∧

π
(
TMALA
u (z)

)
g
(
TMALA
u (z), z

)
π(z)g

(
z, TMALA

u (z)
) ,

where g(z1, z2) = N(z2;TMALA
0 (z1),Σ) is the proposal kernel density.

I Mixing time is faster than RWM, but still the proposed moves are local

MCMC and Variational Inference for AutoEncoders
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Hamiltonian Monte Carlo I

I Currently viewed as the state of the art MCMC algorithm.

I Uses a Data Augmentation approach: artificially extends the state space
by adding a momentum variable. The extended target density is

π(z) = πq(q)N(p; 0, IdS) ,

where πq is the distribution of interest over the position q.

I The marginal distribution is
∫
π(p, q)dp = πq(q)...

- it therefore suffices to sample the joint distribution and to discard the
momentum variable.

MCMC and Variational Inference for AutoEncoders
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Hamiltonian system

I The extended target

π(p, q) ∝ exp(−H(p, q))

where H(p, q) is the Hamiltonian is the sum of the potential energy and
kinetic energy:

H(p, q) = U(q) +K(p) , U(q) = − log πq(q) , K(p) = (1/2)|p|2

I Hamiltonian equations :

q̇ = ∇pH(p, q) = p ṗ = −∇qH(p, q) = −∇qU(q) .

I Hamilton’s equations can be easily shown to be equivalent to Newton’s equations.

I Because a system described by conservative forces conserves the total energy, the
Hamilton’s equations conserve the total Hamiltonian.

MCMC and Variational Inference for AutoEncoders
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Leapfrog steps

I When an exact analytic solution of the Hamilton dynamics is available, we
can use the proposed flow.

I however, there is no analytic solution for Hamilton’s equations, and
therefore, Hamilton’s equations must be approximated by discretizing time.

I The leapfrog discretization integration, also called the Stormer-Verlet
method, provides a good approximation for Hamiltonian dynamics:
LFγ(q0, p0) = (q1, p1) with

p1/2 = p0 − γ/2∇U(q0) , q1 = q0 + γp1/2 , p1 = p1/2 − γ/2∇U(q1) .

MCMC and Variational Inference for AutoEncoders
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Partial refresh

I Define the mappings, for the partial refresh coefficient κ ∈ (0, 1):

T LF
γ : (q, p)→ LFγ,N (q,−p) ,

and T ref
κ,u(q, p) : (q, p)→ (q, κp+

√
1− κ2u) , u ∈ RP ,

where LFγ,N is the N -th time composition of LFγ .

MCMC and Variational Inference for AutoEncoders
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Hamiltonian Monte Carlo II

I Set Du = P , h = N(z; 0, IdP ).

I Draw innovation Uk ∼ h.

I Propose point
Yk+1 = T LF

γ ◦ T ref
κ,Uk (Zk) .

I Accept with probability

αu(q, p) = 1 ∧
[
π
(
Tu(q, p)

)
/π(q, p)

]
.

I This is not a ”classical” MH algorithm yet the resulting kernel is reversible
w.r.t. π, see [Nea11, Section 3.2] and [BRJM18, Section 6].

I Proposals can be far from current points thanks to LF.
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MetFlow variational family

I Let Mφ,h be a parameterized MH kernel and associated proposal mappings
Tφ,u, innovation noise density h and acceptance functions αφ,u.

I Define the MetFlow variational family

Q := {ξKφ = ξ0φM
K
φ,h : φ ∈ Φ} .

I MK
φ,h is the K iterate of Mφ,h and thus ξKφ is the distribution of the K-th

iterate ZK of the Markov chain (Zk)k∈N with Z0 ∼ ξ0φ.

I Idea: Express the marginal distribution of the Markov chain after K
iterations.
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Flavour of the proof

To give an idea, we show here the expression after only 1 iteration. For a
C1(RD,RD) diffeomorphism ψ, define by Jψ(z) the absolute value of the
Jacobian determinant at z ∈ RD.

Lemma
Let (u, φ) ∈ RDu × Φ. Assume that ξ0φ admits a density m0

φ w.r.t. the
Lebesgue measure. Assume in addition Tφ,u is a C1 diffeomorphism. Then, the
distribution ξ1φ(·|u) =

∫
Rd m

0
φ(z0)Qφ,u(z0, ·)dz0 has a density w.r.t. the

Lebesgue measure given by

m1
φ(z|u) = α1

φ,u

(
T−1
φ,u(z)

)
m0
φ

(
T−1
φ,u(z)

)
J
T−1
φ,u

(z) + α0
φ,u(z)m0

φ(z) ,

with
α1
φ,u(z) = αφ,u(z) and α0

φ,u(z) = 1− αφ,u(z) .

The distribution ξ1φ has a density given by

m1
φ(z) =

∫
m1
φ(z|u)h(u)µDuR (du) .

MCMC and Variational Inference for AutoEncoders
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Flavour of the proof

Proof.
Idea: Change of variable z1 = Tφ,u(z0):∫

f(z)m0
φ(z0)Qφ,u(z0, dz) =∫[

m0
φ(z0)

{
α1
φ,u(z0)f

(
Tφ,u(z0)

)
+ α0

φ,u(z0)f(z0)
}]

dz0

=

∫[
{α1

φ,u

(
T−1
φ,u(z1)

)
m0
φ(T−1

φ,u(z1))J
T−1
u

(z1) + α0
φ,u(z1)m0

φ(z1)}f(z1)
]
dz1 .

I Different flows depending on the results of the accept/reject steps: the
final distribution is a mixture of the push-forward distributions

I Increased complexity and ability to recover different modes (while keeping
invariance of MCMC kernels guarantee that we do “better” each time)

MCMC and Variational Inference for AutoEncoders
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Main Result

Define, for a family {Ti}Ki=1 of mappings on RD and 1 ≤ i ≤ k < K,
©k
j=iTj = Ti ◦ · · · ◦ Tk, for a family of vectors vK = (v1, . . . , vK). Set

h(uK) =
∏K
i=1 h(ui). By convention, T 0 = Id.

Proposition

Assume that for any (u, φ) ∈ RDu × Φ, Tφ,u is a C1 diffeomorphism and ξ0φ
admits a density m0

φ w.r.t. the Lebesgue measure. For any {ui ∈ RDu}Ki=1 and

φ ∈ Φ, ξKφ (dz | uK) = ξ0φQφ,u1 · · ·Qφ,uK (dz) has a density given by

mK
φ (z|uK) =

∑
aK∈{0,1}K

mK
φ (z,aK |uK) ,

where

mK
φ (z,aK |uK) = m0

φ

(
©K
j=1T

−aj
φ,uj

(z)
)
J
©Kj=1T

−aj
φ,uj

(z)
∏K
i=1 α

ai
φ,ui

(
©K
j=iT

−aj
φ,uj

(z)
)

In particular,

mK
φ (z) =

∫
mK
φ (z | uK)h(uK)duK .
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A New ELBO

I Objective optimize the ELBO

ELBO(θ, φ;x) =

∫
log

(
pθ(x, z)

mK
θ,φ(z | x)

)
mK
φ (z | x)dz .

I Note that mK
θ,φ now also depends on θ as MCMC targets pθ(· | x).

I Problem: The distribution mK
θ,φ is untractable (a mixture of 2K

components) !!

I Idea: Define a new ELBO

L(θ, φ;x) =
∑

aK∈{0,1}K

∫
h(uK)mK

θ,φ(zK ,aK |uK , x)sθ,φ(x, zK ,aK ,uK)dzKduK ,

where

sθ,φ(x, zK ,aK ,uK) = log
(

2−Kpθ(x, zK)/mK
θ,φ(zK ,aK |uK , x)

)
.
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A new ELBO

This is a proper evidence lower bound !! Jensen’s inequality
w.r.t. mK

θ,φ(zK ,aK |uK , x) indeed shows:

∑
aK∈{0,1}K

∫
mK
θ,φ(zK ,aK |uK , x) log

(
2−Kpθ(x, zK)

mK
θ,φ(zK ,aK |uK , x)

)
dzK ≤ log pθ(x) .
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Further investigating the lower bound

I Define

mK
θ,φ(zK ,aK ,uK |x) = h(uK)mK

θ,φ(zK ,aK |uK , x) ,

mK
θ,φ(aK ,uK |zK , x) = mK

θ,φ(zK ,aK ,uK |x)/mK
θ,φ(zK |x) .

I Jensen’s inequality w.r.t. mK
θ,φ(uK ,aK |zK , x)

L(θ, φ) =
∑

aK∈{0,1}K

∫
mK
θ,φ(zK ,aK ,uK |x) log

(
2−Kpθ(x, zK)

mK
θ,φ(zK ,aK |uK , x)

)
dzKduK

=

∫
mK
θ,φ(zK |x)

∑
aK

∫
mK
θ,φ(aK ,uK |zK , x) log

(
2−Kpθ(x, zK)

mK
θ,φ(zK ,aK |uK , x)

duK

)
dzK

≤
∫
mK
θ,φ(zK |x) log

∑
aK

∫
mK
θ,φ(aK ,uK |zK , x)

2−Kpθ(x, zK)

mK
θ,φ(zK ,aK |uK , x)

duK

 dzK
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Further investigating the lower bound

I Define

mK
θ,φ(zK ,aK ,uK |x) = h(uK)mK

θ,φ(zK ,aK |uK , x) ,

mK
θ,φ(aK ,uK |zK , x) = mK

θ,φ(zK ,aK ,uK |x)/mK
θ,φ(zK |x) .

I Hence, we get

L(θ, φ) ≤
∫
mK
θ,φ(zK |x) log

∑
aK

∫
mK
θ,φ(aK ,uK |zK , x)

2−Kpθ(x, zK)

mK
θ,φ(zK ,aK |uK , x)

duK

dzK

≤
∫
mK
θ,φ(zK |x) log

∑
aK

∫
mK
θ,φ(uK |zK , x)

2−Kpθ(x, zK)

mK
θ,φ(zK |uK , x)

duK

dzK
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Further investigating the lower bound

I Define

mK
θ,φ(zK ,aK ,uK |x) = h(uK)mK

θ,φ(zK ,aK |uK , x) ,

mK
θ,φ(aK ,uK |zK , x) = mK

θ,φ(zK ,aK ,uK |x)/mK
θ,φ(zK |x) .

I Finally,

L(θ, φ) ≤
∫
mK
θ,φ(zK |x) log

∑
aK

∫
mK
θ,φ(uK |zK , x)

2−Kpθ(x, zK)

mK
θ,φ(zK |uK , x)

duK

dzK =

∫
mK
θ,φ(zK |x) log

∑
aK

∫
h(uK)

2−Kpθ(x, zK)

mK
θ,φ(zK |x)

duK

dzK

=

∫
mK
θ,φ(zK |x) log

(
pθ(x, zK)/mK

θ,φ(zK |x)
)

dzK
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Other methods for MCMC & VI: [Hof17]

I Simple method to improve a variational approximation with MCMC steps.

I First optimize variational mean-field distribution mφ using classical ELBO.

I Sample Z0 ∼ mφ.

I Perform K MCMC steps (typically HMC) targetting pθ(· | x) to obtain
sample ZK .

I Use sample ZK of “improved” variational distribution to update θ.

I Pros: Very straightforward to implement and understand.

I Cons: Compared to MetFlow ELBO, no feedback between MCMC steps
and variational approximation !! Does not fix mode dropping in most
cases as MCMC struggles to mix in a few iterations.
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Improving [Hof17] with Normalizing Flows

I Method in [Hof17] is simple: easily improved.

I Idea: NeutraHMC [HSD+19] improves HMC with a Normalizing flow.

I Optimize first a flow fφ to minimize the KL between
#fφq(z) = q(f−1

φ (z))J
f−1
φ

(z) and π the target.

I Perform HMC initialized from q with target #
f−1
φ
π (in the original space,

target “unwarped” by the flow).

I Push samples obtained through flow fφ.

I Pros: Simplify the space on which HMC is performed, improves efficiency
and flexibility.

I Cons: Additional parameters and optimization, does not necessarily correct
unbiasedness of VI.
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Numerical example

I Target: mixture of 8 well separated 2D Gaussian distributions.

I HMC kernels L = 1 leapfrog step, learnable stepsize and learnable mean field
initialization for our HMC-MetFlow.

I Comparison of [Hof17] plain method, and [Hof17] method improved with a
Neural Autoregressive Flow (NAF) - NeutraHMC [HSD+19].
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Figure: Left to right: target distribution, HMC-MetFlow with 2 HMC transitions,
Hoffman’s method [Hof17], and NeutraHMC.
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MCMC with Normalizing flows

I Let Tφ : RD → RD be a learnable invertible flow parameterized by φ ∈ Φ.
Tφ should design a C1-diffeomorphism.

I Denote by π the target distribution parameters are implicit.

I Idea: construct a Markov kernel, reversible w.r.t π based on Tφ.
I Tφ kernel: At each step k,

I Draw a direction Vk+1 ∈ {−1,+1} with probability 1− p, p.

I Define a proposal Yk+1 = T
Vk+1

φ (Zk).
I Accept with probability αφ,Vk+1

(Zk) whereαφ,1(z) = 1 ∧ 1−p
p

π(Tφ(z))

π(z)
JTφ (z) ,

αφ,−1(z) = 1 ∧ p
1−p

π(T−1
φ

(z))

π(z)
J−1
Tφ

(z) .

I The next value is proposed using either the forward or the backward
mapping.
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I Closely related to the ”classical” MCMC framework.. taking the direction
(Vk) as the innovation noise with distribution ν over {−1,+1}: ν(1) = p,
ν(−1) = 1− p.

I In this setting, the conditional Markov kernel is given by

Qφ,v(z,A) = α1
φ,v(z)δTv

φ
(z)(A) + α0

φ,v(z)δz(A) ,

where we denote again α1
φ,v(z) = αφ,v(z) and α0

φ,v(z) = 1− αφ,v(z).

I The integrated Markov kernel Mφ,ν is defined by

Mφ,ν(z,A) =
∑

v∈{−1,1}

ν(v)
{
α1
φ,v(z)δTv

φ
(z)(A) + α0

φ,v(z)δz(A)
}
.

I Problem: the integration is over a discrete distribution ...the proposal
distribution does not have a density ! Cannot apply directly classical
Metropolis-Hastings argument.
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I Marginalizing w.r.t. the direction v ∈ {−1,+1}, the Tφ kernel defines a
Markov kernel

Mφ(z,A) =pα1
φ,1(z)δTφ(z)(A) + (1− p)α1

φ,−1(z)δ
T−1
φ

(z)
(A)

+
{
pα0

φ,1(z) + (1− p)α0
φ,−1(z)

}
δz(A) .

I [DB14] has shown that Mφ is reversible w.r.t. the target π...

I The reversibility is guaranteed because either Tφ(z) and T−1
φ (z) are

proposed (see next slides).
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Reversibility

Let f, g be positive functions∫ ∫
π(dz)Mφ(z, dz′)f(z)g(z′) =

∫
π(z)f(z)g(Tφ(z))pα1

φ,1(z)dz

+

∫
π(z)f(z)g(T−1

φ (z))(1− p)α1
φ,−1(z)dz

+

∫
π(z)f(z)g(z)

{
pα0

φ,1(z) + (1− p)α0
φ,−1(z)

}
dz

It checks out !
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Change of variable∫ ∫
π(dz)Mφ(z, dz′)f(z)g(z′) =

∫
π(T−1

φ (z̃))f(T−1
φ (z̃))g(z̃)pα1

φ,1(T−1
φ (z̃))J

T−1
φ

(z̃)dz̃

+

∫
π(Tφ(z̃))f(Tφ(z̃))g(z̃)(1− p)α1

φ,−1(Tφ(z̃))JTφ(z̃)dz̃

+

∫
π(dz̃)f(z̃)g(z̃)

{
pα0

φ,1(z̃) + (1− p)α0
φ,−1(z̃)

}
dz̃

It checks out !
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Reversibility

Change of variable∫ ∫
π(dz)Mφ(z, dz′)f(z)g(z′) =

∫
π(T−1

φ (z̃))f(T−1
φ (z̃))g(z̃)pα1

φ,1(T−1
φ (z̃))J

T−1
φ

(z̃)dz̃

+

∫
π(Tφ(z̃))f(Tφ(z̃))g(z̃)(1− p)α1

φ,−1(Tφ(z̃))JTφ(z̃)dz̃

+

∫
π(dz̃)f(z̃)g(z̃)

{
pα0

φ,1(z̃) + (1− p)α0
φ,−1(z̃)

}
dz̃

Reversibility

pα1
φ,1(T−1

φ (z))J
T−1
φ

(z)π(T−1
φ (z)) = (1− p)α1

φ,−1(z)π(z)

(1− p)α1
φ,−1(Tφ(z))JTφ(z)π(Tφ(z)) = pα1

φ,1(z)π(z)

. It checks out !
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MetFlow with Normalizing Flows

I Because the innovation is discrete distribution ...the proposal distribution
does not have a density and we cannot apply directly classical
Metropolis-Hastings argument to establish that Mφ,ν is reversible w.r.t. π
does no longer hold.

I But... most of the results derived above still hold or can be readily
adapted !

I In particular, the definition of our new ELBO is still valid... enabling to
learn the parameters θ, φ to get a full VAE.
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I Assumptions: a sequence (Tφ,i)
K
i=1 of C1 diffeomorphisms.

I Idea: transform an initial distribution with density m0
φ by applying

successively the Markov kernels

Mφ,ν,i(z,A) =
∑

v∈{−1,1}

ν(v)
{
α1
φ,v,i(z)δTv

φ,i
(z)(A) + α0

φ,v,i(z)δz(A)
}
.

I After K steps, the marginal distribution has a density given by
mK
φ (z) =

∑
aK∈{0,1}K

∑
vK∈{−1,1}K m

K
φ (z,aK |vK)ν(vK) where

mKφ (z,aK |vK)

= m0
φ

(
©K
j=1T

−vjaj
φ,j (z)

)
J
©Kj=1T

−vjaj
φ,j

(z)
K∏
i=1

α
ai
φ,vi,i

(
©K
j=iT

−vjaj
φ,j (z)

)
.

I Mixture of forward and backward transforms !
I Possible optimization using MetFlow ELBO.
I Idea: Possible to train MetFlow kernels with Normalizing Flows and repeat

them after training complete – only refining final distribution at a low
computational cost (no additional gradient computation)
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Toy distributions

I Target: Distributions proposed by [RM15].
I Comparison Real Non Volume Preserving (Real-NVP) flows [DSDB16],

and our Real-NVP-MetFlow with Normalizing flows. Real-NVP-MetFlow

(50) is a specific instance of MetFlow in which more MetFlow kernels are
applied after training the original 5.

Figure: Variational approximation of Real-NVP, Real-NVP-MetFlow

I We clearly see the improved flexibility given by Real-NVP-MetFlow over
Real-NVP.
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Collaborative Filtering

I Collaborative filtering predicts what items a user will prefer by discovering
and exploiting the similarity patterns across users and items.

I Latent factor models still largely dominate the collaborative filtering
research literature due to their simplicity and effectiveness.

- However, these models are inherently linear, which limits their modeling
capacity.

- Previous work has demonstrated that adding carefully crafted non-linear
features into the linear latent factor models can significantly boost
recommendation performance.

- Recently, a growing body of work involves applying neural networks to the
collaborative filtering setting with promising results

I VAE generalize linear latent-factor models
- enable us to explore non-linear probabilistic latent-variable models, powered

by neural networks, on large-scale recommendation datasets
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Collaborative Filtering

I Data: Matrix user-items of incomplete interactions
I Tasks: Given binary interactions user-item, predict for each user a

“complete” set of items to interact with.
- We use uin{1, . . . , U} to index users and i ∈ {1, . . . , I} to index items.
- The user-by-item interaction matrix is the interaction matrix X ∈ NU×I .
xu = [xu,1, . . . , xu,I ]T ∈ NI is a binary vector : xu,i = 1 if user u had an
interaction with item i.
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Generative model

I For each user u, the model starts by sampling a D-dimensional latent
representation zu from a standard Gaussian prior

I The latent representation zu is transformed via a non-linear function gθ to
produce a probability distribution πθ(zu) over I items. Here we set

πθ(z) = softmax(gθ(z))

I Given the total number of interactions Nu =
∑
i xu,i, xu is assumed to be

sampled from
xu | zu, N∼Mult (Nu, πθ(zu))

I The non-linear function gθ(·) is a multilayer perceptron with parameters θ

I The log-likelihood for user u conditioned on the latent representation is

log pθ(xu | zu) =

I∑
i=1

xu,i log πθ,i(zu) .

MCMC and Variational Inference for AutoEncoders



Introduction
Deep Latent Generative Models (DLGMs)

MetFlow and MetVAE: MCMC & VI
From classical to Flow-based MCMC

Experiments

Application: Collaborative filtering
MNIST experiments on MetFlow with Normalizing Flows

Evaluation of the models

I Need to have access to number of items chosen by the user for the
generative model.

I To assess performance, use top-K metrics.

I Complete the items selected by an user and compare it to all of the
selections using

Recall @n =
|relevant items ∩ recommended items|

|recommended items| ,

nDCG @n =
DCG @n

IDCG @n
,

where

DCG @n =

n∑
i=1

rel(i)/log2(i+ 1) and IDCG @n =

|Rn|∑
i=1

1/log2(i+ 1) .

Rn: set of the n relevant items
rel(i): relevance function of the i-th recommended item of the list, equal
to 1 if the item ranked at i is relevant, and 0 else.
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Datasets & Competitors

I Three real world datasets: Foursquare [YCM+13], Gowalla [CML11],
MovieLens.

I Preprocess to binarize them to fit CF task [LKHJ18].
I Competitors

I MultiVAE [LKHJ18] a VAE for CF.
I WRMF [HKV08] a weighted regularized matrix factorization for implicit

feedback datasets.
I BPR [RFGST09] a Bayesian ranking method.
I GlbAvg, a generic naive baseline (recommends the most popular items

among all users).
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Results
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Figure: Recommendation scores in terms of Recall @5, Recall @10 and nDCG @100
of the considered methods on Foursquare, Gowalla and MovieLens datasets. MetVAE
shows consistently better results compared to other methods.
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MNIST dataset and experiments

I MNIST dataset.

I Fix a generative model pθ achieving SOTA results.

I First experiment: Consider L fixed observations.

I Approximate the posterior pθ(z|(xi)Li=1).

I Comparison between a NAF (SOTA Normalizing Flow) and MetFlow with
5 Real-NVP flows.

I Similar computational complexity.
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Mixture of 3 on MNIST

Fixed digits

NAF MetFlow

Figure: Mixture of 3 on MNIST
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Inpainting on MNIST

I In-painting set-up introduced in [LHSD17].
I In-paint the top of an image using Block Gibbs sampling: Given an image
x, we denote xt, xb the top and the bottom half pixels.

I Start from x0.
I At each step, sample zt ∼ pθ(z | xt) and then x̃t ∼ pθ(x | zt).
I Set xt+1 = (x̃tt, x

b
0).

I Use two variational approximations for pθ(z | x): a mean-field
approximation, a mean-field with a NAF push-forward, and MetFlow
initialized at the mean-field.

Figure: Top to bottom: Mean-Field approximation and MetFlow, Mean-Field
approximation, Mean-Field Approximation and NAF. Orange samples on the left
represent the initialization image.
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N. Bou-Rabee and S.-S. Jesús Maŕıa, Geometric integrators and the
Hamiltonian Monte Carlo method, Acta Numerica (2018), 1–92.

Anthony L Caterini, Arnaud Doucet, and Dino Sejdinovic, Hamiltonian
variational auto-encoder, Advances in Neural Information Processing
Systems, 2018, pp. 8167–8177.

Eunjoon Cho, Seth A. Myers, and Jure Leskovec, Friendship and mobility:
User movement in location-based social networks, KDD ’11, 2011.

Somak Dutta and Sourabh Bhattacharya, Markov chain Monte Carlo
based on deterministic transformations, Statistical Methodology 16
(2014), 100–116.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio, Density
estimation using real NVP, arXiv preprint arXiv:1605.08803 (2016).

MCMC and Variational Inference for AutoEncoders



Bibliography II

Yifan Hu, Yehuda Koren, and Chris Volinsky, Collaborative filtering for
implicit feedback datasets, Proceedings of the 2008 Eighth IEEE
International Conference on Data Mining (USA), ICDM ’08, IEEE
Computer Society, 2008, p. 263–272.

Matthew D Hoffman and Yian Ma, Langevin dynamics as nonparametric
variational inference.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner, beta-vae:
Learning basic visual concepts with a constrained variational framework.

Matthew D. Hoffman, Learning deep latent Gaussian models with Markov
chain Monte Carlo, Proceedings of the 34th International Conference on
Machine Learning (International Convention Centre, Sydney, Australia)
(Doina Precup and Yee Whye Teh, eds.), Proceedings of Machine
Learning Research, vol. 70, PMLR, 06–11 Aug 2017, pp. 1510–1519.

MCMC and Variational Inference for AutoEncoders



Bibliography III

Matthew Hoffman, Pavel Sountsov, Joshua V Dillon, Ian Langmore,
Dustin Tran, and Srinivas Vasudevan, Neutra-lizing bad geometry in
Hamiltonian Monte Carlo using neural transport, arXiv preprint
arXiv:1903.03704 (2019).

Daniel Levy, Matthew D Hoffman, and Jascha Sohl-Dickstein, Generalizing
Hamiltonian Monte Carlo with neural networks, arXiv preprint
arXiv:1711.09268 (2017).

Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara,
Variational autoencoders for collaborative filtering, Proceedings of the
2018 World Wide Web Conference (Republic and Canton of Geneva,
CHE), WWW ’18, International World Wide Web Conferences Steering
Committee, 2018, p. 689–698.

R. M. Neal, MCMC using Hamiltonian dynamics, Handbook of Markov
Chain Monte Carlo (2011), 113–162.

MCMC and Variational Inference for AutoEncoders



Bibliography IV

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars
Schmidt-Thieme, Bpr: Bayesian personalized ranking from implicit
feedback, Proceedings of the Twenty-Fifth Conference on Uncertainty in
Artificial Intelligence (Arlington, Virginia, USA), UAI ’09, AUAI Press,
2009, p. 452–461.

Danilo Rezende and Shakir Mohamed, Variational inference with
normalizing flows, International Conference on Machine Learning, 2015,
pp. 1530–1538.

Tim Salimans, Diederik Kingma, and Max Welling, Markov chain Monte
Carlo and variational inference: Bridging the gap, International Conference
on Machine Learning, 2015, pp. 1218–1226.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby,
and Ole Winther, Ladder variational autoencoders, Advances in neural
information processing systems, 2016, pp. 3738–3746.

MCMC and Variational Inference for AutoEncoders



Bibliography V

Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat
Thalmann, Time-aware point-of-interest recommendation, Proceedings of
the 36th International ACM SIGIR Conference on Research and
Development in Information Retrieval (New York, NY, USA), SIGIR ’13,
ACM, 2013, pp. 363–372.

MCMC and Variational Inference for AutoEncoders


	Introduction
	Deep Latent Generative Models (DLGMs)
	Markov Chain Monte Carlo (MCMC)
	Variational Inference
	Implementation & Deep Learning

	MetFlow and MetVAE: MCMC & VI
	Metropolis Hastings kernels
	Variational inference with MetFlow family

	From classical to Flow-based MCMC
	Experiments
	Application: Collaborative filtering
	MNIST experiments on MetFlow with Normalizing Flows

	Appendix

