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Supervised learning with fMRI
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Image,
sound, task

fMRI volume
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Decoding

Objective: Predict y given X or learn a function
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https://paris-saclay-cds.github.io/autism_challenge/

Precision medicine / Biomarkers
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Why more data is better?
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Figure from [Gramfort et al. 2011]

• 5 subjects

• 12 sessions (more than 
1000 scans)

• Binary classification (face 
vs. house)

• Test of 2 left-out sessions

Data from [Haxby et al. 2001]
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Figure from [Gramfort et al. 2011]

• 5 subjects

• 12 sessions (more than 
1000 scans)

• Binary classification (face 
vs. house)

• Test of 2 left-out sessions

Data from [Haxby et al. 2001]

The more data the better

Almost 100% (no noise)



Problem:
“big data” in science

is generally 
unsupervised



Project 1

• Objective: Learning representations from neural time 
series with self-supervision and data augmentation



Project 1

• Objective: Learning representations from neural time 
series with self-supervision and data augmentation

Self-supervision to the rescue

E.g.: Jigsaw puzzle task from Noroozi & Favaro (2016)

Other examples: word2vec, BERT, nonlinear ICA, etc.

In a nutshell: use the structure of the data to pretrain a feature 
extractor with a supervised (“pretext”) task – then use the features.

Original image Input patches Output



Project 1

• Objective: Learning representations from neural time 
series with self-supervision and data augmentation

[Banville et al. MLSP 2019] SSL to learn on sleep EEG



Problem:
What pretext task 

makes sense for EEG/
MEG?

• Use knowledge about sleep (slow cycles)

• Theoretical approaches based on recent 
results on identifiability of non-linear ICA 
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Possible Self Sup. Tasks
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to be predicted

Predict if 2 windows of data are close in time

Other approaches: CPC [Oord et al. 2018],
PCL [Hyvärinen et al. 2017] etc.
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Project 1
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• Objective: Learning representations from neural time 
series with self-supervision and data augmentation



Problem:
Augmenting MEG/EEG 
data is not as simple as 
for images or speech

• Use the physics of MEG/EEG

• Use knowledge/availability of pure noise

• Use knowledge about neuroscience (freq. 
shifts, biophysiological models) 



Problem:
Augmenting MEG/EEG 
data is not as simple as 
for images or speech

• Use the physics of MEG/EEG

• Use knowledge/availability of pure noise

• Use knowledge about neuroscience (freq. 
shifts, biophysiological models) 

We want to learn how to 
augment neuroscience data!
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Problem of dataset variability
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• ≠ recording devices / scanners

• ≠ EEG channels / fMRI sequence parameters

• ≠ preprocessing steps

• ≠ populations: ages, sexes, clinical disorders…

• ≠ labeling guidelines
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• Pooling datasets to increase n can reduce performance
• Performance on new dataset can drop



Alexandre Gramfort                                 Chaire IA BrAIN  

Problem of dataset variability

12

• ≠ recording devices / scanners

• ≠ EEG channels / fMRI sequence parameters

• ≠ preprocessing steps

• ≠ populations: ages, sexes, clinical disorders…

• ≠ labeling guidelines

• Pooling datasets to increase n can reduce performance
• Performance on new dataset can drop

[Torralba and Efros, 2011]
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General benchmark

Figure 2: General benchmark of DA methods. A: averaged balanced
accuracy. B: balanced accuracy per record (1 dot is 1 record).
Dashed-line: optimal performance of the classifier, should we have labels
for 40 records of the target domain.
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Domain adaptation with EEG sleep 
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[Chambon et al., Domain adaptation with optimal transport improves
EEG sleep stage classifiers, PRNI 2018]

• Train dataset: MESA [Dean et al. 2016]

• Test dataset: MASS-session 3 [O’Reilly et al. 2014]

• 3 EEG + 2 EOG channels 
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Domain adaptation with EEG sleep 

13

[Chambon et al., Domain adaptation with optimal transport improves
EEG sleep stage classifiers, PRNI 2018]

• Train dataset: MESA [Dean et al. 2016]

• Test dataset: MASS-session 3 [O’Reilly et al. 2014]

• 3 EEG + 2 EOG channels 

Domain adaptation 
improves 

performance



How do we 
impact


neuroscience and 
medicine?



Predict of brain “fragility” for optimal drug dosage
across age

Joint work with:



MNE software for processing MEG and EEG data,  A. Gramfort, M. Luessi, E. Larson, D. Engemann, D. 
Strohmeier, C. Brodbeck, L. Parkkonen, M. Hämäläinen, Neuroimage 2013

https://mne.tools/

Transfer + impact 
with MNE

https://mne.tools/
https://mne.tools/
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Objectives
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O1. Learn with no-supervision on noisy and complex 
multivariate signals

O2. Learn end-to-end predictive systems from limited 
data exploiting physical constraints

O3. Learn from data coming from many different source 
domains

O4. Develop high-quality software tools that can reach 
clinical research

BrAIN objective: Develop the next ML paradigms to extract 
knowledge from physiological signals
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Team
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• Denis Engemann

• Thomas Moreau

• 1 Post-doc

• 1 Engineer

• 3 PhDs

• INSERM team at Larib. for clinical cases

• Aapo Hyvärinen as external collaborator/visitor



GitHub : @agramfort Twitter : @agramfort

http://alexandre.gramfort.netContact

"An approximate answer to the right problem is worth a good deal 
more than an exact answer to an approximate problem. ~ John Tukey"


