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Who am Ii
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* Head of the DRIM team @LIRIS lab
e Distrubuted systems
e Dependability

 Privacy (e.g., location privacy, private web
search, private recommender systems)

* Performance
* |Information Retrieval

* Increasing interest for Distributed Learning

* Numerous challenges in terms of
dependability, privacy & performance




Today’s Online Services




An example: Web search

dd

We also use this information
[that we collect from all of
our services] to offer you
users are querying tailored content — like giving

SEARCH ENGINES you more relevant search
results and ads. ”

Every day, millions of

http://www.google.com/policies/privacy/

£ USER PROFILES




Web Search: Privacy Threats

Retrieve user’s identity
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Barbaro, Michael, Tom Zeller, and Saul Hansell. "A face 1is
exposed for AOL searcher no. 4417749." New York Times 9.2008
(2006) : 8For.
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Infer extra information

Jones, Rosie, et al. "I know what you did last summer: query
logs and wuser privacy." Proceedings of the sixteenth ACM
conference on Conference on information and knowledge

m management. ACM, 2007.




nother example: Location-based services

V Location based services are very useful for users

o3 v

& from 2180 3rd Ave

1o 111 Wadsworth Ave, New Yor...

@ 20 min 8 33min * 1hr24

o
@
/>9 §
h = McN}
S
Lucille Roberts N
S ¢y South Beac!
> % ! Restaurant &
S
(ﬁS
@ Ut
< U 25
S S,
< %o
o W, b S
(X RO
L 4
20 min (4.0 mi)
Fastest route, despite the usual traffic

Navigation
e.g., Google Maps

Legal ¥

§ BROOKLYN
<L BRIOGE.

446 23 63/100

Visited Saved Categories

947 Check-ins

Today

Juliana’s Pizza

DUMBO ©21 @3 @1
Today 2:41PM

Brooklyn Bridge Park
DUMBO ©13
Today 12:28 PM

Yesterday

Black Tap

Lower East Side ©17 @1 3
Jul 21 7:23 PM

Mmmmmmmmmmm. This is so
gooooood!! — with Jack, David,
Nicole

Social Network

e.g., Foursequare

Video Games

9 U & 1443

e.g., Pokemon Go

0.4 miles

Golden Gate Bridge

18th Ave. ' 12th Ave

\

ksicat Bivd B  sapieandro way

®
Westgate Dr
.\

Borica St

915:

Ludiow

Maywood

Urba

Hea

Sargent

Crowd-Sensing
e.g., Waze




Location data collection

Most asked permissions of 30.000 sampled apps in the Apple Store
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Location-based Services: Threats
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Location-based Services: Threats
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Threats Illlustrated

Angry Birds and 'leaky’ phone apps
targeted by NSA and GCHQ for user data

@ US and UK spy agencies piggyback on commercial data
® Details can include aged sexual orientation QUARTZ
@ Documents also reveal targeted tools against individual phones

Google collects Android users’
locations even when location
services are disabled

bating app Tinder briefly

exposed the physical
location of its users




#CBC | MENU v

NEWS Top Stories Local COVID-19 Climate World Canada Politics

Data is the new oIl

Science

'Data is the new oil’: Your personal information is
now the world's most valuable commodity

f ) (&) in

Huge amounts of data are controlled by just 5 global mega-corporations that are
bigger than most governments

‘) Ramona Pringle - CBC News - Posted: Aug 25, 2017 5:00 AM ET | Last Updated: August 25, 2017

» “..the corporate giants are collecting information about every aspect of our lives, our behaviour
and our decision-making...”

* Data is used by online services for
* Improving their algorithms
* Mastering strengths and vulnerabilities of suppliers, competitors and customers

* Earning money through the Ad system (“Google and Facebook control 88 per cent of all new
internet advertising”)



Today’s Online Services

* Heavily centralized (governance)
* Data-centric
* Open numerous threats

* Increased user awareness on privacy

* Legislator
* GDPR, ...







Decentralized Systems

e "a subset of distributed systems where multiple authorities control
different components and no authority is fully trusted by all”
[Troncoso et al. PETS’17]

e Decentralization facets
* Scalability/Openness
* Resilience
* Incentives



Decentralized Systems: not a new concept

* Peer-to-Peer systems (as opposed to client-
server architectures)

e 1999: Napster file sharing system

* Followed: Gnutella, G2, eDonkey, BitTorrent,
PPlive, ToR...

* Tim Berners-Lee's vision for the World Wide
Web was close to a P2P“: each user of the web
would be an active editor and contributor,
creating and linking content to form an
interlinked "web" of links”.



Web 3.0: a new wave of Web Decentralization

The Evolution of the Web FABRIC
VENTURES

Web 1.0 Web 2.0 Web 3.0
Green shoots of E-commerce ‘Social’ networks Al-driven services
Desktop browser Access ‘Mobile-first’ always on Decentralised data architecture
A Dedicated Infrastructure Cloud-driven computing Edge computing infrastructure
L
N ﬂ """"" ?
MAKER
$
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i dbitcoin
O
o : Uber
E airbnb
>
s ﬁfacebook.
g I8 Netscape e -
L3 Q P $5.9 trillion
‘ ey
. - -
$1.1 trillion*
1990 2025

* Internet companies market cap as of 2000



There will be no decentralized
services without decentralized
learning



Online Services Heavily Rely on ML algorithms

* “Facebook/Meta would collapse if you remove ML algorithms” said Y. Lecun.

Models Services

Support Vector Machines (SVM) Facer (User Matching)

Gradient Boosted Decision Trees (GBDT)  Sigma

Multi-Layer Perceptron (MLP) Ads, News Feed, Search, Sigma

Convolutional Neural Networks (CNN) Lumos, Facer (Feature Extraction)

Recurrent Neural Networks (RNN) Text Understanding, Translation, Speech Recognition
TABLE 1

MACHINE LEARNING ALGORITHMS LEVERAGED BY PRODUCT/SERVICE.

Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective. Facebook Inc. HPCA’18.



Federated Learning : a Natural Candidate

* Federated learning (FL) aims at collaboratively train ML
models while keeping the data decentralized

e 2016: Initially proposed by Google Research for e —————
training the Gboard (Google Android Keyboard) Crenaelirl/Ses
TOUT AFFICHER -
e 2022: thousands of research papers published every |
year ) Google is learning on your dat
* Interest coming from varius communities Q@ (o= d@ -
* Al/ML, optimization, distributed systems, networks, security, ' 2 3 4 5 6 7 8 9 0
privacy, dependability, ... qgwertyuionp
* Some real world deployments alslalelalnlilxl

e Libraries: PySyft, TensorFlow Federated, FATE, Flower, 4 2z x ¢ v b n m
Substra...

1#1 , 4 English (US) » . <).—_r|



Federated Learning
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FL Key Characteristics

e Data is generated
e Data is and not independent and identically distributed

( )

* Privacy/Robustness issues
* Model updates may embedd knowledge about the participants
Limited reliability/availability of participants
Robustness against selfish parties
Robustness against malicious parties

Slide by. A. Bellet



Cross-silo vs Cross-device FL

* Cross-silo * Cross-device
e ~2-100 parties * Massive number of parties
« Medium/large dataset per party (millions)
* Reliable/available parties * Small dataset per party
e Parties are trusted * Limited reliability/availability

* Some parties may be malicious

— — — ® @ @
=i IZis Itle 0000  cegw  ©60e



Server Orchestrated vs. Fully Decentralized

* Orchestrated * Decentralized

e Server-client communication * Device to device communication

* Global coordination, global * No global coordination, local
aggregation aggregation

e Server is a single point of failure * Naturally scales to a large number
and may become a bottleneck of devices
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Decentralizing Online Services with
Distributed/Decentralized Learning

* Usecases
* Decentralizing Recommender Systems with Gossip Learning
* PhD Yacine Bellal [Ubicomp’22]
* FL-based Location Privacy
* PhD Besma Khalfoun [Ubicomp’21][Middleware’20]
* Decentralized and Secure Web Search with Trusted Execution Environments
 PhD Matthieu Bettinger + Aghiles Ait Messaoud [Middleware’22]

* Addressed challenges
* Personalization
* Privacy
* Robustness




Decentralized Recommender
Systems over Gossip Learning



mazn (P

Carrefour

ebay

Linked [

- Recommender Systems are everywhere.

- Netflix values recommendations at half a billion dollars to the
company.

> LinkedIn job matching algorithms improves performance by 50%




Recommender Systems (RecSys)

* Users rate Items
* RecSys predicts items a user might like

e Centralized

* User-based/Item-based collaborative filtering
 Recommends to a given user items that similar users have liked

e Matrix Factorization (MF)
* Neural Collaborative Filtering (DNN inspired from MF)

* Federated
* Generalized Matrix Factorization (GMF)



Gossip Learning

Each node owns and maintains a

Nodes exchanges their model updates

Each node the received models (it acts as a
server)

The objective could be

* To train a model at each node that performs well wrt a local
distribution (personalization) -> RecSys

* To train a model at each node that performs well wrt a global
distribution (generalization)




Gossip Learning

* Properties
* Removes the trust assumption on a central entity
 Removes the central point of failure
* Scales better with the increasing number of clients

* But
 Model convergence (network connectivity, dynamics, device heterogeneity)?
* Privacy (attack surface increased or reduced)?
* Resilience to malicious clients? Selfish clients?



Personalisation Challenge

* MovielLens dataset: 1000 users
e Model: GMF

* Metric
* HitRatio20 computed at each node

* Average HitRatio20: 80%

e But: clear head and tail users can
be distinguished

1.0 A

0.8 A

0.6

CDF

0.4 A

0.0 4

- Federated Averaging

-

0.0 0.2 0.4

0.6
Local HR20

0.8

1.0



Decentralized RecSys: focus on personalisation

* How to improve users’ local satisfaction?

* Two protocols:
* Peer sampling
* Personalized peer-sampling service

* Model aggregation
e Performance-based aggregation function



Performance-based Aggregation

* Use a local validation set to evaluate the received models compared
to the local model

* Aggregate the local and received model weighted wrt their
performance

M1 M2 M3 M4 M5

1 u 1

M3>M2>M>M1

M : Local model



Performance-based Aggregation

Algorithm 2: Performance-based Aggregation Function

Data: Local Dataset D;, currentModel M;, WeightingSize, TestSize

1 Procedure INIT:
) D:/Veighting

3 lees' = RandomlySamplesSet(D; \ Dl.Weigh”ng , TestSize) > Randomly samples the test set
i Weighti

4 D’{ram — Di \ (Dl elgnting U Dfest)

5

¢ Procedure PERFORMANCEBASEDAGGREGATIONFUNCTION(M,):

= RandomlySamplesSet(D;, WeightingSize) > Randomly samples the weighting set

7 P, = PredictAndEvaluate(M,., Diweig hting ) > Make prediction with M, and evaluate its performance

8 P; = PredictAndEvaluate(M;, Diweig hting ) > Make prediction with M; and evaluate its performance
——— \; = ﬁ (P; X Mj + Py X My) > Aggregate M; and M, wrt their performance
0 | Update(M;, Dl{rain) > Train the new M; on local data

11




Random Peer Sampling in a Nutshell

* Each node has a set of randomly selected neighbors (a view)

* Periodically, each node selects a node in its view and shuffles part of
its view with the view of the selected node

* Multiple flavors of Random Peer Sampling protocols exist

* Dissemination properties (according to the size of the view, shuffling protocol,
etc)

* Resilience properties (to churn, to Byzantine nodes, etc)



Personalized Peer Sampling

* Keeps track of the best received models.

* Considers their owners when sampling
peers.

* Also considers random neighbors

* Exploration/exploitation ratio «.

 Random Peer Sampling: Exploration dominant
strategy.




Evaluation Setup

 Use cases
e Movie recommendation

e Point-of-interest recommendation
e Omnet++ simulations, 1000 users

e Models

e Generalized Matrix Factorization

* PRME-G
* Competitors

* Federated (FedAvg, FedFast[SIGKDD’20], Reptile[VLDB’21])
e Decentralized (Model-Age-Based[JPDC’21], Decentralized FedAvg, Decentralized

Reptile)
* Datasets
Dataset Type Users | Locations/Movies | Records
Foursquare-NYC Points of interest 1083 38333 227,428
Gowalla-NYC Points of interest 718 32924 185,932
MovieLens-100k | Movies Recommendation | 943 1682 100,000




Results

e GMF model
* MovielLens dataset

e Substantial improvement over
SOTA solutions (both median
and tail)

* More results in the paper

Algorithm\Per- th h th
centile HR% =0 20 99.9
Traditionnal ML 40 20 7
FedAvg 33 15 7
Model-Age-

Based Method 30 - 0
Decentralized

FedAvg 36 21 .
Ours 46 31 21




Ongoing/Future Research Directions

* Privacy

* A node needs to assess the performance of its
neighbors’ models -> how sensitive? @

 Robustnhess @ﬁ(nI/

* Assess how much performance-based aggregation @
naturally protects against poisoning attack 2



Assessing the sensitivity of model exchanges

e Can Gossip Learning help an attacker discover
communities?
e All users are honest-but-curious and run the attack
* Ground truth LGBT

_—————

e Off-line computed top-k most similar users for each user I - @
« Similarity based on rated items Giletsjaunes (e T ,
* Each time a user receives a model, it evaluates the e N e @
similarity between its locally trained model and the | a & N
received model and keeps track of its most similar e
users D S N

* At the end a comparison is performed between the e -
ground truth and the top-k computed by each user

~ - -



Impact of Model Dilution on Privacy

* In FL: gradients are “pure”
* Models are updated with local training only

* In Gossip Learning: gradients are diluted

* A received model might have been aggregated
with other users’ models




Conclusion

* Today’s online services are too centralized
* A new wave of decentralization is undergoing
* Decentralized ML is needed

 Numerous challenges (ML, optimization, distributed
systems/algorithms, security, privacy, networking...)

* Understand the benefits/limits of decentralization
* Why did previous decentralization waves fail?
* Does decentralization increase or reduce the attack surface?
* Enforcing privacy & resilience to Byzantine nodes: possible?
* What can we do beyond empirical works?



