
Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Lipschitz neural networks for image restoration

M. Terris†

joint works with T. Moreau, J. Tachella, et al.

†INRIA

SCAI
February 2024
Paris, France

1

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Introduction

1

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Inverse imaging problems

Imaging problems: recover x given observation z as

z = Hx+ e

with H : Rn → Km linear, e ∈ Km realisation of random noise.

Aim: recover an estimate of x from z.

2

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Inverse imaging problems

Imaging problems: recover x given observation z as

z = Hx+ e

with H : Rn → Km linear, e ∈ Km realisation of random noise.

Aim: recover an estimate of x from z.

?

H ·+e

z x

Image restoration

?

H ·+e

H∗z x

Astronomical imaging

?

H ·+e

H∗z x

Magnetic resonance
imaging (MRI)

2

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Inverse imaging problems

Imaging problems: recover x given observation z as

z = Hx+ e

with H : Rn → Km linear, e ∈ Km realisation of random noise.

Aim: recover an estimate of x from z.

?

H ·+e

z x

Image restoration

?

H ·+e

H∗z x

Astronomical imaging

?

H ·+e

H∗z x

Magnetic resonance
imaging (MRI)

How do we solve such problem?

2

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

The optimisation approach: towards plug-and-play (PnP)

Aim: recover an estimate x̂ of x from z as

z = Hx+ e

3

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

The optimisation approach: towards plug-and-play (PnP)

Aim: recover an estimate x̂ of x from z as

z = Hx+ e

An estimate can be found through p(x|z). For example, a
maximum-a-posteriori approach gives:

argmax
x

log p(x|z) = argmin
x

− log p(z|x)− log p(x)

3

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

The optimisation approach: towards plug-and-play (PnP)

Aim: recover an estimate x̂ of x from z as

z = Hx+ e

An estimate can be found through p(x|z). For example, a
maximum-a-posteriori approach gives:

argmax
x

log p(x|z) = argmin
x

− log p(z|x)− log p(x)

Reformulation as a mimization problem:

x̂ = argmin
x

f(x) + r(x)

data-fidelity regularizer (prior)

3

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

The optimisation approach: towards plug-and-play (PnP)

Aim: recover an estimate x̂ of x from z as

z = Hx+ e

An estimate can be found through p(x|z). For example, a
maximum-a-posteriori approach gives:

argmax
x

log p(x|z) = argmin
x

− log p(z|x)− log p(x)

Reformulation as a mimization problem:

x̂ = argmin
x

f(x) + r(x)

data-fidelity regularizer (prior)

Classical choice:

• f(x) = 1
2∥Hx− z∥2

• r(x) = λTV(x), r(x) = λ∥Ψx∥1...

3

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

The optimisation approach: towards plug-and-play (PnP)

Aim: recover an estimate x̂ of x from z as

z = Hx+ e

An estimate can be found through p(x|z). For example, a
maximum-a-posteriori approach gives:

argmax
x

log p(x|z) = argmin
x

− log p(z|x)− log p(x)

Reformulation as a mimization problem:

x̂ = argmin
x

f(x) + r(x)

data-fidelity regularizer (prior)

(∀k ∈ N) xk+1 = proxγr

(
xk − γ∇f(xk)

)
(PGD)

3

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Illustration

Let’s solve one image deconvolution problem with

(∀k ∈ N) xk+1 = proxγr (xk − γ∇f(xk)) (PGD)

and we choose r(x) = TV(x).

4

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Illustration

Let’s solve one image deconvolution problem with

(∀k ∈ N) xk+1 = proxγr (xk − γ∇f(xk)) (PGD)

and we choose r(x) = TV(x).

z = Hx+ e Result of (PGD) x

4

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Illustration

Let’s solve one image deconvolution problem with

(∀k ∈ N) xk+1 = proxγr (xk − γ∇f(xk)) (PGD)

and we choose r(x) = TV(x).

z = Hx+ e Result of (PGD) x

Can we do better?

4

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

PnP algorithms

Replace the proximity operator by a powerful denoiser:

5

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

PnP algorithms

Replace the proximity operator by a powerful denoiser:

(∀k ∈ N) xk+1 = proxγr

(
xk − γ∇f(xk)

)
(PGD)

5

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

PnP algorithms

Replace the proximity operator by a powerful denoiser:

(∀k ∈ N) xk+1 = proxγr

(
xk − γ∇f(xk)

)
(PGD)

5

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

PnP algorithms

Replace the proximity operator by a powerful denoiser:

(∀k ∈ N) xk+1 = J
(
xk − γ∇f(xk)

)
(PnP-PGD)

5

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

PnP algorithms

Replace the proximity operator by a powerful denoiser:

(∀k ∈ N) xk+1 = J
(
xk − γ∇f(xk)

)
(PnP-PGD)

Usually, J is a deep neural network (DNN). But why a denoiser?

5

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

PnP algorithms

Replace the proximity operator by a powerful denoiser:

(∀k ∈ N) xk+1 = J
(
xk − γ∇f(xk)

)
(PnP-PGD)

Usually, J is a deep neural network (DNN). But why a denoiser?

y = x+ e proxTV(y) DRUNet(y) x

5

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

PnP algorithms

Replace the proximity operator by a powerful denoiser:

(∀k ∈ N) xk+1 = J
(
xk − γ∇f(xk)

)
(PnP-PGD)

Usually, J is a deep neural network (DNN). But why a denoiser?

Because it is very easy to train!

5

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

PnP algorithms

Replace the proximity operator by a powerful denoiser:

(∀k ∈ N) xk+1 = J
(
xk − γ∇f(xk)

)
(PnP-PGD)

Usually, J is a deep neural network (DNN). But why a denoiser?

y = x+ e proxTV(y) DRUNet(y) x

Take home message 1: denoisers act as implicit priors!

5

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x0 − γ∇f(x0) J(x0 − γ∇f(x0))

6

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x0 − γ∇f(x0) J(x0 − γ∇f(x0))
:= x1

6

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x1 − γ∇f(x1) J(x1 − γ∇f(x1))
:= x2

6

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x10 − γ∇f(x10) J(x10 − γ∇f(x10))
:= x11

6

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x30 − γ∇f(x30) J(x30 − γ∇f(x30))
:= x31

6

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x50 − γ∇f(x50) J(x50 − γ∇f(x50))

6

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x100 − γ∇f(x100) J(x100 − γ∇f(x100))

Nice results after ∼ 50 iterations, but does not converge...

6

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x200 − γ∇f(x200) J(x200 − γ∇f(x200))

Nice results after ∼ 50 iterations, but does not converge...

6

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x300 − γ∇f(x300) J(x300 − γ∇f(x300))

Nice results after ∼ 50 iterations, but does not converge...

6

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x900 − γ∇f(x900) J(x900 − γ∇f(x900))

Nice results after ∼ 50 iterations, but does not converge...

6

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x900 − γ∇f(x900) J(x900 − γ∇f(x900))

Nice results after ∼ 50 iterations, but does not converge...

This raises many questions!

6

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

In this presentation

Questions:

• How to solve the non-convergence problem?

• Can one restore the link between a prior and the DNN in the PnP
algorithm?

• Do we really need constraints?

Outline:

1. Resolvent architectures through 1-Lip regularisation (arxiv
2012.13247)

2. Beyond Lipschitz constraints (arxiv 2312.01831)

7

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Learning resolvent networks

8

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Convergence and characterisation

xk+1 = Jθ(xk − γ∇f(xk)) (PnP-PGD)

9

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Convergence and characterisation

xk+1 = Jθ(xk − γ∇f(xk)) (PnP-PGD)

Definition

We say that Jθ : H → H is firmly nonexpansive it there exists a
1-Lipschitz operator Qθ : H → H such that

Jθ =
Id+Qθ

2
.

9

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Convergence and characterisation

xk+1 = Jθ(xk − γ∇f(xk)) (PnP-PGD)

Definition

We say that Jθ : H → H is firmly nonexpansive it there exists a
1-Lipschitz operator Qθ : H → H such that

Jθ =
Id+Qθ

2
.

Theorem (informal)

If Jθ is firmly nonexpansive and γ is small enough, there exists a convex
function gθ such that (xk)k∈N in (PnP-PGD) converges to x ∈ RN

satisfying
0 ∈ γ∇f(x) + ∂gθ(x).

9

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

How to?

Goal:

Build a DNN denoiser J , i.e. 2J − Id is 1-Lipschitz.

Two possible approaches

10

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

How to?

Goal:

Build a DNN denoiser J , i.e. 2J − Id is 1-Lipschitz.

Two possible approaches

A tight approach

Define an architecture of J s.t.

J =
Id+Q

2

with Q 1-Lipschitz.

10

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

How to?

Goal:

Build a DNN denoiser J , i.e. 2J − Id is 1-Lipschitz.

Two possible approaches

A tight approach

Define an architecture of J s.t.

J =
Id+Q

2

with Q 1-Lipschitz.

A relaxed approach

Regularise the training loss as

lossusual + λLip(2J − Id)

Applies to any kind of architecture
(but not tight...).

10

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Application to denoising

Goal: build a DNN denoiser J s.t. 2J − Id is 1-Lipschitz, regardless of
the architecture.

Step 1: Training dataset (x, y):

• x: groundtruth (target) image;

• y = x+ σn: noisy image.

Step 2: Proposed training loss:

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(yℓ)∥2, 1− ε

}
denoising relaxed 1-Lip constraint

where Qθ = 2Jθ − Id, and where ∇∇∇(·) denotes the Jacobian operator.

∥∇∇∇Qθ(xℓ)∥ is an approximation of the Lipschitz constant of Q = 2J − Id

∥∇∇∇Q∥ ≤ 1 ⇒ convergence of PnP

11

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Application to denoising

Goal: build a DNN denoiser J s.t. 2J − Id is 1-Lipschitz, regardless of
the architecture.

Step 1: Training dataset (x, y):

• x: groundtruth (target) image;

• y = x+ σn: noisy image.

Step 2: Proposed training loss:

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(yℓ)∥2, 1− ε

}
denoising relaxed 1-Lip constraint

where Qθ = 2Jθ − Id, and where ∇∇∇(·) denotes the Jacobian operator.

∥∇∇∇Qθ(xℓ)∥ is an approximation of the Lipschitz constant of Q = 2J − Id

∥∇∇∇Q∥ ≤ 1 ⇒ convergence of PnP

11

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Application to denoising

Goal: build a DNN denoiser J s.t. 2J − Id is 1-Lipschitz, regardless of
the architecture.

Step 1: Training dataset (x, y):

• x: groundtruth (target) image;

• y = x+ σn: noisy image.

Step 2: Proposed training loss:

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(yℓ)∥2, 1− ε

}
denoising relaxed 1-Lip constraint

where Qθ = 2Jθ − Id, and where ∇∇∇(·) denotes the Jacobian operator.

∥∇∇∇Qθ(xℓ)∥ is an approximation of the Lipschitz constant of Q = 2J − Id

∥∇∇∇Q∥ ≤ 1 ⇒ convergence of PnP

11

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Application to denoising

Goal: build a DNN denoiser J s.t. 2J − Id is 1-Lipschitz, regardless of
the architecture.

Step 1: Training dataset (x, y):

• x: groundtruth (target) image;

• y = x+ σn: noisy image.

Step 2: Proposed training loss:

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(yℓ)∥2, 1− ε

}
denoising relaxed 1-Lip constraint

where Qθ = 2Jθ − Id, and where ∇∇∇(·) denotes the Jacobian operator.

∥∇∇∇Qθ(xℓ)∥ is an approximation of the Lipschitz constant of Q = 2J − Id

∥∇∇∇Q∥ ≤ 1 ⇒ convergence of PnP

11

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Application to denoising

Goal: build a DNN denoiser J s.t. 2J − Id is 1-Lipschitz, regardless of
the architecture.

Step 1: Training dataset (x, y):

• x: groundtruth (target) image;

• y = x+ σn: noisy image.

Step 2: Proposed training loss:

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(yℓ)∥2, 1− ε

}
denoising relaxed 1-Lip constraint

where Qθ = 2Jθ − Id, and where ∇∇∇(·) denotes the Jacobian operator.

∥∇∇∇Qθ(xℓ)∥ is an approximation of the Lipschitz constant of Q = 2J − Id

∥∇∇∇Q∥ ≤ 1 ⇒ convergence of PnP

11

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

About the training loss...

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(x̃ℓ)∥2, 1− ε

}
denoising relaxed 1-Lip constraint

where ∇∇∇(·) denotes the Jacobian operator and ∥∇∇∇Qθ(x̃ℓ)∥2 is an
approximation of the Lipschitz constant of Q = 2J − Id.

12

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

About the training loss...

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(x̃ℓ)∥2, 1− ε

}
denoising relaxed 1-Lip constraint

where ∇∇∇(·) denotes the Jacobian operator and ∥∇∇∇Qθ(x̃ℓ)∥2 is an
approximation of the Lipschitz constant of Q = 2J − Id.

No access to ∇∇∇Q, but we can compute ∥∇∇∇Q∥ with autograd!

12

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

About the training loss...

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(x̃ℓ)∥2, 1− ε

}
denoising relaxed 1-Lip constraint

where ∇∇∇(·) denotes the Jacobian operator and ∥∇∇∇Qθ(x̃ℓ)∥2 is an
approximation of the Lipschitz constant of Q = 2J − Id.

No access to ∇∇∇Q, but we can compute ∥∇∇∇Q∥ with autograd!

How?
Given a function (DNN) Q:

• the grad operation in PyTorch gives the product u× Jac(Q)⊤;

• the “double backward trick” gives Jac(Q)× v.

12

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

About the training loss...

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(x̃ℓ)∥2, 1− ε

}
denoising relaxed 1-Lip constraint

where ∇∇∇(·) denotes the Jacobian operator and ∥∇∇∇Qθ(x̃ℓ)∥2 is an
approximation of the Lipschitz constant of Q = 2J − Id.

No access to ∇∇∇Q, but we can compute ∥∇∇∇Q∥ with autograd!

How?
Given a function (DNN) Q:

• the grad operation in PyTorch gives the product u× Jac(Q)⊤;

• the “double backward trick” gives Jac(Q)× v.

These are all the ingredients for using the power method!

12

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

About the training loss...

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(x̃ℓ)∥2, 1− ε

}
denoising relaxed 1-Lip constraint

where ∇∇∇(·) denotes the Jacobian operator and ∥∇∇∇Qθ(x̃ℓ)∥2 is an
approximation of the Lipschitz constant of Q = 2J − Id.

No access to ∇∇∇Q, but we can compute ∥∇∇∇Q∥ with autograd!

import torch.autograd.grad as grad

...

for n it in range(num iter):

w = torch.ones like(y, requires grad=True)

v = grad(grad(y, x, w, create graph=True), w, u, create graph=True)[0]

v = grad(y, x, v, retain graph=True, create graph=True)[0]

12

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

About the training loss...

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(x̃ℓ)∥2, 1− ε

}
denoising relaxed 1-Lip constraint

where ∇∇∇(·) denotes the Jacobian operator and ∥∇∇∇Qθ(x̃ℓ)∥2 is an
approximation of the Lipschitz constant of Q = 2J − Id.

No access to ∇∇∇Q, but we can compute ∥∇∇∇Q∥ with autograd!

import torch.autograd.grad as grad

...

for n it in range(num iter):

w = torch.ones like(y, requires grad=True)

v = grad(grad(y, x, w, create graph=True), w, u, create graph=True)[0]

v = grad(y, x, v, retain graph=True, create graph=True)[0]

Take home message 2:
backprop allows to compute the lipschitz constant of a DNN!

12

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Influence of the Jacobian penalization

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(x̃ℓ)∥2, 1− ε

}
denoising relaxed FNE constraint

13

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Influence of the Jacobian penalization

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(x̃ℓ)∥2, 1− ε

}
denoising relaxed FNE constraint

Convergence of PnP depending on the value of λ.

☛ Deblurring problem: x from BSD10 test set

13

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Influence of the Jacobian penalization

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(x̃ℓ)∥2, 1− ε

}
denoising relaxed FNE constraint

Convergence of PnP depending on the value of λ.

☛ ck = ∥xk − xk−1∥/∥x0∥, for (xk)k∈N should be monotone

13

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Influence of the Jacobian penalization

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(x̃ℓ)∥2, 1− ε

}
denoising relaxed FNE constraint

Convergence of PnP depending on the value of λ.

☛ ck = ∥xk − xk−1∥/∥x0∥, for (xk)k∈N should be monotone

300 600 900

10−3

10−5

10−7

PnP FB iteration n

cn

300 600 900

10−3

10−5

10−7

PnP FB iteration n

cn

300 600 900

10−3

10−5

10−7

PnP FB iteration n

cn

300 600 900

10−3

10−5

10−7

PnP FB iteration n

cn

(a) λ = 0 (b) λ = 5× 10−7 (c) λ = 10−6 (d) λ = 2× 10−6

300 600 900

10−3

10−5

10−7

PnP FB iteration n

cn

300 600 900

10−3

10−5

10−7

PnP FB iteration n

cn

300 600 900

10−3

10−5

10−7

PnP FB iteration n

cn

300 600 900

10−3

10−5

10−7

PnP FB iteration n

cn

(e) λ = 5× 10−6 (f) λ = 10−5 (g) λ = 4× 10−5 (h) λ = 1.6× 10−4

https://arxiv.org/abs/2012.13247
13

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Visual results

(a) Groundtruth
(b) Observation
(20.48, 0.387)

(c) proxµ‖Ψ†·‖1
(26.13, 0.775)

(d) proxµ‖·‖TV

(26.57, 0.787)

(e) BM3D
(26.09, 0.732)

(f) RealSN
(24.68, 0.726)

(g) DnCNN
(26.12, 0.643)

(h) Proposed
(27.09,0.789)

14

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Beyond 1-Lipschitz networks

15

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Do we really need 1 Lipschitz?

16

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Do we really need 1 Lipschitz?

2 antagonist observations:

• DNNs seem to behave like proximity operators from far, but they are
not 1-Lipschitz.

• Imposing 1-Lipschitz constraints solves the unstability issue, but
lowers performance.

16

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Do we really need 1 Lipschitz?

Idea: Imaging priors should have some invariance properties with respect
to certain groups of transformations, such as rotations, translations, and
reflections. We denote these transformations associated with a group G,
{Tg}g∈G where Tg ∈ Rn×n is a unitary matrix.

16

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Do we really need 1 Lipschitz?

Idea: Imaging priors should have some invariance properties with respect
to certain groups of transformations, such as rotations, translations, and
reflections. We denote these transformations associated with a group G,
{Tg}g∈G where Tg ∈ Rn×n is a unitary matrix.

16

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Do we really need 1 Lipschitz?

Idea: Imaging priors should have some invariance properties with respect
to certain groups of transformations, such as rotations, translations, and
reflections. We denote these transformations associated with a group G,
{Tg}g∈G where Tg ∈ Rn×n is a unitary matrix.

Definition

We say that J is equivariant to the group action {Tg}g∈G if
J(Tgx) = TgJ(x) for all x and g ∈ G.

16

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Do we really need 1 Lipschitz?

Any operator J can be made G-equivariant through this averaging
procedure:

JG(x)
def
=

1

|G|
∑
g∈G

T−1
g J(Tgx). (1)

17

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Do we really need 1 Lipschitz?

Any operator J can be made G-equivariant through this averaging
procedure:

JG(x)
def
=

1

|G|
∑
g∈G

T−1
g J(Tgx). (1)

Why can it help?

17

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Do we really need 1 Lipschitz?

Any operator J can be made G-equivariant through this averaging
procedure:

JG(x)
def
=

1

|G|
∑
g∈G

T−1
g J(Tgx). (1)

Why can it help?

Proposition

Assume that J is a linear denoiser with singular value decomposition
J =

∑n
i=1 λiuiv

⊤
i and λ1 > λ2 ≥ · · · ≥ λn ≥ 0. If the principal

component u1v
⊤
1 is not G-equivariant, then the averaged denoiser JG has

a strictly smaller Lipschitz constant than J .

17

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Do we really need 1 Lipschitz?

Any operator J can be made G-equivariant through this averaging
procedure:

JG(x)
def
=

1

|G|
∑
g∈G

T−1
g J(Tgx). (1)

Why can it help?

Proposition

Assume that J is a linear denoiser with singular value decomposition
J =

∑n
i=1 λiuiv

⊤
i and λ1 > λ2 ≥ · · · ≥ λn ≥ 0. If the principal

component u1v
⊤
1 is not G-equivariant, then the averaged denoiser JG has

a strictly smaller Lipschitz constant than J .

Take home meassage 3:
Equivariance can reduce the Lipschitz constant!

17

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Results

Equivariant PnP:

Sample gk ∼ G
Set J̃G,k(x) = T−1

gk
J(Tgkx)

xk+1 = J̃G,k
(
xk − γA⊤(Axk − y)

)
.

(eq. PnP-PGD)

18

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Results

Equivariant PnP:

Sample gk ∼ G
Set J̃G,k(x) = T−1

gk
J(Tgkx)

xk+1 = J̃G,k
(
xk − γA⊤(Axk − y)

)
.

(eq. PnP-PGD)

PnP REDULA

Backprojection EquivariantStandard Observed EquivariantStandardObserved EquivariantStandard

https://arxiv.org/abs/2312.01831

18

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Conclusion

19

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Conclusion (i)

We have shown:

• 1-Lipschitz denoisers yield convergent PnP algorithms;

• Equivariance can lower the Lipschitz constant of denoisers.

20

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Conclusion (i)

We have shown:

• 1-Lipschitz denoisers yield convergent PnP algorithms;

• Equivariance can lower the Lipschitz constant of denoisers.

But more than this:

• We aim at solving problems of the form y = Ax+ e;

• Minimization problems of the form argmin
x

f(x) + g(x) are replaced

with PnP

• Applied for 2D, 3D, 3D+time imaging problems...

20

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Conclusion (i)

We have shown:

• 1-Lipschitz denoisers yield convergent PnP algorithms;

• Equivariance can lower the Lipschitz constant of denoisers.

But more than this:

• We aim at solving problems of the form y = Ax+ e;

• Minimization problems of the form argmin
x

f(x) + g(x) are replaced

with PnP

• Applied for 2D, 3D, 3D+time imaging problems...

but how about other problems?

20

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Conclusion (ii)

All this is implemented in our brand new library
https://deepinv.github.io/deepinv/!

21

https://deepinv.github.io/deepinv/

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

Conclusion (ii)

All this is implemented in our brand new library
https://deepinv.github.io/deepinv/!

Thank you!
21

https://deepinv.github.io/deepinv/

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

References

• 1-Lipschitz denoisers and PnP: https://arxiv.org/abs/2012.13247

• Equivariant PnP: https://arxiv.org/abs/2312.01831

22

	Introduction
	Learning resolvent networks
	Beyond 1-Lipschitz networks
	Conclusion

