Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0000000 0000 0000

Lipschitz neural networks for image restoration

M. Terrist

joint works with T. Moreau, J. Tachella, et al.

TINRIA

SCAI
February 2024
Paris, France

v d

lrreia—

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
©000000 0000000 0000 0000

Introduction

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0Oe00000 0000000 0000 0000

Inverse imaging problems

Imaging problems: recover x given observation z as
z=Hx+e
with H: R™ — K™ linear, e € K™ realisation of random noise.

Aim: recover an estimate of z from z.

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0Oe00000 0000000 0000 0000

Inverse imaging problems

Imaging problems: recover x given observation z as
z=Hzx+e
with H: R™ — K™ linear, e € K™ realisation of random noise.

Aim: recover an estimate of z from z.

H*z
Image restoration Astronomical imaging Magnetic resonance
imaging (MRI)

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0Oe00000 0000000 0000 0000

Inverse imaging problems

Imaging problems: recover x given observation z as
z=Hzx+e
with H: R™ — K™ linear, e € K™ realisation of random noise.

Aim: recover an estimate of z from z.

H*z
Image restoration Astronomical imaging Magnetic resonance
imaging (MRI)

How do we solve such problem?

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
00e0000 0000000 0000 0000

The optimisation approach: towards plug-and-play (PnP)

Aim: recover an estimate Z of = from z as

z=Hx+e

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
00e0000 0000000 0000 0000

The optimisation approach: towards plug-and-play (PnP)

Aim: recover an estimate Z of = from z as
z=Hx+e

An estimate can be found through p(z|z). For example, a
maximum-a-posteriori approach gives:

arg max log p(z|z) = arg min — log p(z|z) — log p(z)
x x

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
00e0000 0000000 0000 0000

The optimisation approach: towards plug-and-play (PnP)

Aim: recover an estimate Z of = from z as
z=Hx+e

An estimate can be found through p(z|z). For example, a
maximum-a-posteriori approach gives:

arg max log p(z|z) = arg min — log p(z|z) — log p(z)
x x
Reformulation as a mimization problem:

T =argmin f(z) + r(z)

data-fidelity T regularizer (prior)

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
00e0000 0000000 0000 0000

The optimisation approach: towards plug-and-play (PnP)

Aim: recover an estimate Z of = from z as
z=Hx+e

An estimate can be found through p(z|z). For example, a
maximum-a-posteriori approach gives:

arg max log p(z|z) = arg min — log p(z|z) — log p(z)
x x
Reformulation as a mimization problem:
T =argmin f(z) + r(z)

data-fidelity Tregularizer (prior)
Classical choice:

o f(z) =3[Hz— 2|
o r(x) =ATV(z), r(x)=AYz|;..

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
00e0000 0000000 0000 0000

The optimisation approach: towards plug-and-play (PnP)

Aim: recover an estimate Z of = from z as
z=Hx+e

An estimate can be found through p(z|z). For example, a
maximum-a-posteriori approach gives:

arg max log p(z|z) = arg min — log p(z|z) — log p(z)
x x
Reformulation as a mimization problem:
T =argmin f(z) + r(z)

data-fidelity T regularizer (prior)

(Vk € N) xp41 = prox,, (xk — YV f(z)) (PGD)

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
000e000 0000000 0000 0000

[llustration
Let's solve one image deconvolution problem with
(Vk € N) xpq1 = prox,, (vx — YV f(21)) (PGD)

and we choose r(x) = TV(z).

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
000e000 0000000 0000 0000

[llustration

Let's solve one image deconvolution problem with

(Vk € N) Tk+1 = ProxX,, (.'l?k - ’)/Vf(l'k)) (PGD)

I

and we choose r(z) = TV (x).

r & f 1A

Result of (PGD)

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
000e000 0000000 0000 0000

[llustration

Let's solve one image deconvolution problem with

(Vk € N) Tk+1 = ProxX,, (.'Ek - ’}/Vf(l'k)) (PGD)

I

and we choose r(z) = TV (x).

r & f 1A

Result of (PGD)

Can we do better?

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000e00 0000000 0000 0000

PnP algorithms

Replace the proximity operator by a powerful denoiser:

Introduction Learning resolvent networks Beyond 1-Lipschitz networks
0000e00 0000000 0000

PnP algorithms

Replace the proximity operator by a powerful denoiser:

(VkeN) xzpq = Prox.,. (zr — YV f(zr))

Conclusion
0000

(PGD)

Introduction Learning resolvent networks Beyond 1-Lipschitz networks
0000e00 0000000 0000

PnP algorithms

Replace the proximity operator by a powerful denoiser:

(VkeN) xzpq = Prox.,. (zr — YV f(zr))

Conclusion
0000

(PGD)

Introduction Learning resolvent networks Beyond 1-Lipschitz networks
0000e00 0000000 0000

PnP algorithms

Replace the proximity operator by a powerful denoiser:

(VkEeN) zpr1=J (xk =YV f(zk))

Conclusion
0000

(PnP-PGD)

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000e00 0000000 0000 0000

PnP algorithms

Replace the proximity operator by a powerful denoiser:
(VkeN) app1=J (xk — YV f(zk)) (PnP-PGD)

Usually, J is a deep neural network (DNN). But why a denoiser?

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000e00 0000000 0000 0000

PnP algorithms

Replace the proximity operator by a powerful denoiser:
(VEEN) zpp1=J (i — YV f ()) (PnP-PGD)

Usually, J is a deep neural network (DNN). But why a denoiser?

proxry (y) DRUNet(y) x

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000800 0000000 0000 0000

PnP algorithms

Replace the proximity operator by a powerful denoiser:
(VkE€N) a1 = J (i — YV f ()) (PnP-PGD)

Usually, J is a deep neural network (DNN). But why a denoiser?

Because it is very easy to train!

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000e00 0000000 0000 0000

PnP algorithms

Replace the proximity operator by a powerful denoiser:
(VEEN) zpp1=J (i — YV f ()) (PnP-PGD)

Usually, J is a deep neural network (DNN). But why a denoiser?

proxry (y) DRUNet(y) x

Take home message 1: denoisers act as implicit priors!

Introduction Learning resolvent networks Beyond 1-Lipschitz networks
00000e0 0000000 0000

PnP algorithms: illustration

(Vk eN) w1 =J (xr — YV f(ag))
where J = DRUNet.

Conclusion
0000

Introduction Learning resolvent networks
00000e0 0000000

PnP algorithms: illustration

Beyond 1-Lipschitz networks Conclusion
0000 0000

(Vk € N) apy1 = J (x, — YV f(ar))

where J = DRUNet.

- 4

(w0 — VI

=T

9))

Introduction Learning resolvent networks Beyond 1-Lipschitz networks
00000e0 0000000 0000

PnP algorithms: illustration

(Vk eN) w1 =J (xr — YV f(ag))
where J = DRUNet.

Conclusion
0000

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
00000e0 0000000 0000 0000

PnP algorithms: illustration

(Vk eN) w1 =J (xr — YV f(ag))
where J = DRUNet.

- g o

T1o - YV f(z10) J(x10 =YV f(210))
=1

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
00000e0 0000000 0000 0000

PnP algorithms: illustration

(Vk eN) w1 =J (xr — YV f(ag))
where J = DRUNet.

» 27 7 7 7.

T30 - YV f(230) J(x30 =YV f(230))
=31

Introduction Learning resolvent networks
00000e0 0000000

PnP algorithms: illustration

Beyond 1-Lipschitz networks Conclusion
0000 0000

(Vk € N) apy1 = J (x, — YV f(ar))

where J = DRUNet.

—

J(wso’— YV f(xs0))

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
00000e0 0000000 0000 0000

PnP algorithms: illustration

(VkeN) xp1 = J (2p — YV f(21))
where J = DRUNet.

-

z=Hz+e z100 — 7YV f(2100) J(x100 = YV f(2100))

Nice results after ~ 50 iterations, but does not converge...

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
00000e0 0000000 0000 0000

PnP algorithms: illustration

(VkeN) xp1 = J (2p — YV f(21))
where J = DRUNet.

Nice results after ~ 50 iterations, but does not converge...

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
00000e0 0000000 0000 0000

PnP algorithms: illustration

(VkeN) xp1 = J (2p — YV f(21))
where J = DRUNet.

e R S

56300‘ — 7V f(2300) J(l‘306 — YV f(x300))

Nice results after ~ 50 iterations, but does not converge...

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
00000e0 0000000 0000 0000

PnP algorithms: illustration

(VkeN) @pyr =J (xr =YV f(ar))
where J = DRUNet.

1‘900‘ -7V f(2900) J(l‘goo‘— YV f(900))

Nice results after ~ 50 iterations, but does not converge...

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
00000e0 0000000 0000 0000

PnP algorithms: illustration

(Vk eN) w1 =J (xr — YV f(ag))
where J = DRUNet.

-

;”6900. — vV f(z900) J(ivgo-o — 7V f(x900))

Nice results after ~ 50 iterations, but does not converge...

This raises many questions!

Beyond 1-Lipschitz networks Conclusion

Introduction Learning resolvent networks
0000

O00000e 0000000 0000

In this presentation

Questions:
e How to solve the non-convergence problem?
e Can one restore the link between a prior and the DNN in the PnP
algorithm?

e Do we really need constraints?

Outline:
1. Resolvent architectures through 1-Lip regularisation (arxiv
2012.13247)
2. Beyond Lipschitz constraints (arxiv 2312.01831)

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 @000000 0000 0000

Learning resolvent networks

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0O®00000 0000 0000

Convergence and characterisation

Thy1 = Jo(zr — YV f(21)) (PnP-PGD)

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0O®00000 0000 0000

Convergence and characterisation
wp41 = Jo(vr — YV f(zr)) (PnP-PGD)

Definition
We say that Jy: H — H is firmly nonexpansive it there exists a
1-Lipschitz operator QQg: H — H such that
Id +Qs
J@ = T

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0000000 0000 0000

Convergence and characterisation
Tpr1 = Jo(xp — YV f(21)) (PnP-PGD)

Definition
We say that Jy: H — H is firmly nonexpansive it there exists a
1-Lipschitz operator QQg: H — H such that
Id +Qg
J@ = T

Theorem (informal)

If Jp is firmly nonexpansive and « is small enough, there exists a convex
function gy such that (z3)en in (PnP-PGD) converges to z € RV
satisfying

0 €V f(x)+ dgg(x).

Introduction Learning resolvent networks Beyond 1-Lipschitz networks
0000000 00@0000 0000

How to?

Goal:
Build a DNN denoiser J, i.e. 2J — Id is 1-Lipschitz.

Two possible approaches

Conclusion
0000

Introduction Learning resolvent networks Beyond 1-Lipschitz networks
0000000 00@0000 0000

How to?

Build a DNN denoiser J, i.e. 2J — Id is 1-Lipschitz.

Two possible approaches

A tight approach

Define an architecture of J s.t.

C1d+Q

7=

with @ 1-Lipschitz.

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 00@0000 0000 0000

How to?

Build a DNN denoiser J, i.e. 2J — Id is 1-Lipschitz.

Two possible approaches

A tight approach A relaxed approach
Define an architecture of J s.t. Regularise the training loss as
g d+@ lossusual + A Lip(2J — Id)
2

Applies to any kind of architecture

with @ 1-Lipschitz. (but not tight...).

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 000000 0000 0000

Application to denoising

Goal: build a DNN denoiser J s.t. 2J — Id is 1-Lipschitz, regardless of
the architecture.

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 000000 0000 0000

Application to denoising

build a DNN denoiser J s.t. 2J — Id is 1-Lipschitz, regardless of
the architecture.

Step 1: Training dataset (Z,y):
e z: groundtruth (target) image;

e y = + on: noisy image.

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 000000 0000 0000

Application to denoising

Goal: build a DNN denoiser J s.t. 2J — Id is 1-Lipschitz, regardless of
the architecture.

Step 1: Training dataset (Z,y):
e z: groundtruth (target) image;

e y = + on: noisy image.

Step 2: Proposed training loss:

L
L1
minimize = [Jo(u) =il + Amax {[VQa(ye)|,1 ~ <)

=1
denoising relaxedT 1-Lip constraint

where @y = 2Jy — Id, and where V(-) denotes the Jacobian operator.

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 000000 0000 0000

Application to denoising
build a DNN denoiser J s.t. 2J — Id is 1-Lipschitz, regardless of

the architecture.
Step 1: Training dataset (Z,y):
e z: groundtruth (target) image;
e y = + on: noisy image.
Step 2: Proposed training loss:

L
o1
minimize = [Jo(u) =il + Amax {[VQa(ye)|,1 ~ <)

=1
denoising reIaxedTl-Lip constraint

where @y = 2Jy — Id, and where V(-) denotes the Jacobian operator.

IVQg(xy)|| is an approximation of the Lipschitz constant of @ = 2J — Id

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 000000 0000 0000

Application to denoising
build a DNN denoiser J s.t. 2J — Id is 1-Lipschitz, regardless of

the architecture.
Step 1: Training dataset (Z,y):
e z: groundtruth (target) image;
e y = + on: noisy image.
Step 2: Proposed training loss:

L
o1
minimize = [Jo(u) =il + Amax {[VQa(ye)|,1 ~ <)

=1
denoising reIaxedTl-Lip constraint

where @y = 2Jy — Id, and where V(-) denotes the Jacobian operator.

IVQg(xy)|| is an approximation of the Lipschitz constant of @ = 2J — Id

IVQ]| < 1= convergence of PnP

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0O000@00 0000 0000

About the training loss...

L
| _ -
minimize — E | Jo(ye) — Telli + Amax {||VQa(Z¢)|? 1 — ¢}

0eRP =
denoising reIaxedI 1-Lip constraint

where V(-) denotes the Jacobian operator and |[VQy (/)| is an
approximation of the Lipschitz constant of Q) = 2J — Id.

12

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0O000@00 0000 0000

About the training loss...

L
| _ -
minimize — E | Jo(ye) — Telli + Amax {||VQa(Z¢)|? 1 — ¢}

0eRP =
denoising reIaxedI 1-Lip constraint

where V(-) denotes the Jacobian operator and |[VQy (/)| is an
approximation of the Lipschitz constant of Q) = 2J — Id.

No access to V@, but we can compute ||[VQ|| with autograd!

Introduction Learning resolvent networks Beyond 1-Lipschitz networks

Conclusion
0000000 0O000@00 0000

0000

About the training loss...

L
| _ -
minimize — E | Jo(ye) — Telli + Amax {||VQa(Z¢)|? 1 — ¢}

fER =
denoising reIaxedIl—Lip constraint

where V(-) denotes the Jacobian operator and |[VQy (/)| is an
approximation of the Lipschitz constant of Q) = 2J — Id.

No access to V@, but we can compute ||[VQ|| with autograd!
How?
Given a function (DNN) Q:

e the grad operation in PyTorch gives the product u x Jac(Q)T;
o the “double backward trick” gives Jac(Q) X v.

Introduction Learning resolvent networks Beyond 1-Lipschitz networks

Conclusion
0000000 0O000@00 0000

0000

About the training loss...

L
o1 _ ~
minimize - E | Jo(ye) — Telli + Amax {||VQa(Z¢)|? 1 — ¢}

fER =
denoising reIaxedIl—Lip constraint

where V(-) denotes the Jacobian operator and |[VQy (/)| is an
approximation of the Lipschitz constant of Q) = 2J — Id.

No access to V@, but we can compute ||[VQ|| with autograd!

How?
Given a function (DNN) Q:

e the grad operation in PyTorch gives the product u x Jac(Q)T;
o the “double backward trick” gives Jac(Q) X v.

These are all the ingredients for using the power method!

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0O000@00 0000 0000

About the training loss...

L
| _ -
minimize — E | Jo(ye) — Telli + Amax {||VQa(Z¢)|? 1 — ¢}

fER =
denoising reIaxedIl—Lip constraint

where V(-) denotes the Jacobian operator and |[VQy (/)| is an
approximation of the Lipschitz constant of Q) = 2J — Id.

No access to V@, but we can compute ||[VQ|| with autograd!
import torch.autograd.grad as grad

for n_it in range(num_iter):
w = torch.ones like(y, requires grad=True)
v = grad(grad(y, x, w, create_graph=True), w, u, create_graph=True) [0]
v = grad(y, x, v, retain_graph=True, create_graph=True) [0]

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0O000@00 0000 0000

About the training loss...

L
| _ -
minimize — E | Jo(ye) — Telli + Amax {||VQa(Z¢)|? 1 — ¢}

fER =
denoising reIaxedI 1-Lip constraint

where V(-) denotes the Jacobian operator and |[VQy (/)| is an
approximation of the Lipschitz constant of Q) = 2J — Id.

No access to V@, but we can compute ||[VQ|| with autograd!
import torch.autograd.grad as grad

for n_it in range(num_iter):
w = torch.ones like(y, requires grad=True)
v = grad(grad(y, x, w, create_graph=True), w, u, create_graph=True) [0]
v = grad(y, x, v, retain_graph=True, create_graph=True) [0]

Take home message 2:
backprop allows to compute the lipschitz constant of a DNN!

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0000000 0000 0000

Influence of the Jacobian penalization

L
o1 _ -
minimize — E | Jo(ye) — Telli + Amax {||VQa(Z¢)|? 1 — ¢}

0eRP - T
denoising relaxed FNE constraint

13

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0000080 0000 0000

Influence of the Jacobian penalization

L
o1 _ -
minimize — E | Jo(ye) — Telli + Amax {||VQa(Z¢)|? 1 — ¢}

0cRFP =
denoising reIaxedTFNE constraint

Convergence of PnP depending on the value of A.

@ Deblurring problem: T from BSD10 test set

13

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0000080 0000 0000

Influence of the Jacobian penalization

L
o1 _ -
minimize — E | Jo(ye) — Telli + Amax {||VQa(Z¢)|? 1 — ¢}

0eRP - T
denoising relaxed FNE constraint

Convergence of PnP depending on the value of \.

@ ¢ = ||log — xk—1]|/||zol|, for (xx)ken should be monotone

13

Introduction
0000000

Learning resolvent networks
0000080

Beyond 1-Lipschitz networks

0000

Influence of the Jacobian penalization

minim

0cRP

reIaxedT FNE constraint

L
.1 — 5
ize 7> [o(ye) = Telh + Amax {[IVQs(@)[%,1 -}

=1
denoising

Conclusion
0000

Convergence of PnP depending on the value of A.

@ ¢ = ||log — xk—1]|/||zol|, for (xx)ken should be monotone

Cn
1079
1077
1077

Cn
1079

1077
1077

1
300 600 900

PnP FB iteration n

Cn ~ Cp ~ Cn
1079 1079 1073
1079 1077 1079

-7 1077 1077

PnP FB iteration n

PnP FB iteration n

300 600 900
PnP FB iteration n

(aA)A=0 (b)A=5x10"7 (c) A=10"" (d)A=2x10"°
Cn “Cn ~Cn
1073 1079 1079
109 -107] 1070
10-7] =107 107
300 600 900 300 600 900 300600 900 300 600 900

PnP FB iteration n
(&) A=5x10"°

PnP FB iteration n
() x=10""

https://arxiv.org/abs/2012.13247

nP FB iteration n
(g) A=4x107?

PnP FB iteration n
(h) A=1.6x10""*

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 O00000e 0000 0000

Visual results

ey

(a) Groundtruth

& e
(b) Observation (c) proxﬂn\w I (d) prox
0 13) (26

ST T Bf
(e) BM3D (f) RealSN (g) DunCNN (h) Proposed
(26.09,0.732) (24.68,0.726) (26.12,0.643) (27.09,0.789)

14

Introduction
0000000

Learning resolvent networks Beyond 1-Lipschitz networks
0000000 @000

Beyond 1-Lipschitz networks

Conclusion
0000

15

Introduction Learning resolvent networks
0000000 0000000

Do we really need 1 Lipschitz?

Zero-filled

Beyond 1-Lipschitz networks
0e00

Groundtruth

Conclusion
0000

16

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0000000 0e00 0000

Do we really need 1 Lipschitz?

2 antagonist observations:
e DNNs seem to behave like proximity operators from far, but they are
not 1-Lipschitz.
e Imposing 1-Lipschitz constraints solves the unstability issue, but
lowers performance.

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0000000 0e00 0000

Do we really need 1 Lipschitz?

Imaging priors should have some properties with respect
to certain groups of transformations, such as rotations, translations, and
reflections. We denote these transformations associated with a group G,
{T,}4eg where T, € R"*"™ is a unitary matrix.

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0000000 0e00 0000

Do we really need 1 Lipschitz?

Idea: Imaging priors should have some invariance properties with respect
to certain groups of transformations, such as rotations, translations, and
reflections. We denote these transformations associated with a group G,
{T,}4eg where T, € R"*"™ is a unitary matrix.

16

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0000000 0e00 0000

Do we really need 1 Lipschitz?

Imaging priors should have some properties with respect
to certain groups of transformations, such as rotations, translations, and
reflections. We denote these transformations associated with a group G,
{T,}4eg where T, € R"*"™ is a unitary matrix.

Definition
We say that J is equivariant to the group action {1}, }4¢c¢ if
J(Tyx) = TyJ(z) for all z and g € G.

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0000000 [e]e] Ie] 0000

Do we really need 1 Lipschitz?

Any operator J can be made G-equivariant through this averaging
procedure:

def 1 1
|g|ZT J(T,x). (1)
geg

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0000000 [e]e] Ie] 0000

Do we really need 1 Lipschitz?

Any operator J can be made G-equivariant through this averaging
procedure:

def 1 1
|g|ZT J(T,x). (1)
geg

Why can it help?

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0000000 [e]e] e} 0000

Do we really need 1 Lipschitz?

Any operator J can be made G-equivariant through this averaging
procedure:

def 1 1
|g|ZT J(T,x). (1)
geg

Why can it help?

Proposition

Assume that J is a linear denoiser with singular value decomposition

J =310 Ny, Tand A1 > Ao > --- >\, > 0. If the principal
component ulvlT is not g—equwarlant, then the averaged denoiser Jg has
a strictly smaller Lipschitz constant than J.

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0000000 [e]e] Ie] 0000

Do we really need 1 Lipschitz?

Any operator J can be made G-equivariant through this averaging
procedure:

def 1 1
|Q|ZT J(T,x). (1)
geg

Why can it help?

Proposition

Assume that J is a linear denoiser with singular value decomposition

J =310 Ny, Tand A1 > Ao > --- >\, > 0. If the principal
component ulvlT is not G-equivariant, then the averaged denoiser Jg has
a strictly smaller Lipschitz constant than J.

Take home meassage 3:
Equivariance can reduce the Lipschitz constant!

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0000000 [eJe]e]] 0000

Results
Equivariant PnP:
Sample g, ~ G
Set Jg,u(x) = T, ' J(Ty,) (eq. PnP-PGD)
Tr4+1 = ngc (ﬂﬁk - ’YAT(AJCk - y)) .

Introduction Learning resolvent networks Beyond 1-Lipschitz networks
0000000 0000000 [eJe]e]]

Results

Conclusion
0000

Equivariant PnP:
Sample gp ~ G

Set Jgi(x) = T, J(Ty,) (eq. PnP-PGD)
Th+1 = jg’k (a:k — 'yAT(Axk — y)) .

PnP ULA RED
30
30
= s T18
2 ~ — standard -]
= <28 — equivariant ES
& | — standard 2 ~—— 216 — standard
1o] — eauivariant — equivariant
261
0 2000 4000 6000 8000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
iteration iteration iteration

/ vl 3

Observed Standard Equivariant Observed Standard

Backprojection Standard Equivariant Equivariant

https://arxiv.org/abs/2312.01831

18

Introduction
0000000

Learning resolvent networks Beyond 1-Lipschitz networks
0000000 0000

Conclusion

Conclusion
0000

19

Introduction Learning resolvent networks Beyond 1-Lipschitz networks
0000000 0000000 0000

Conclusion (i)

We have shown:
e 1-Lipschitz denoisers yield convergent PnP algorithms;

e Equivariance can lower the Lipschitz constant of denoisers.

Conclusion
0e00

20

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0000000 0000 0e00

Conclusion (i)

We have shown:
e 1-Lipschitz denoisers yield convergent PnP algorithms;

e Equivariance can lower the Lipschitz constant of denoisers.

But more than this:
e We aim at solving problems of the form y = Ax + e;
e Minimization problems of the form argminf(x) + g(x) are replaced
with PnP ’
e Applied for 2D, 3D, 3D+time imaging problems...

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0000000 0000 0e00

Conclusion (i)

We have shown:
e 1-Lipschitz denoisers yield convergent PnP algorithms;

e Equivariance can lower the Lipschitz constant of denoisers.

But more than this:
e We aim at solving problems of the form y = Ax + e;
e Minimization problems of the form argminf(x) + g(x) are replaced
with PnP ’
e Applied for 2D, 3D, 3D+time imaging problems...

but how about other problems?

Introduction Learning resolvent networks Beyond 1-Lipschitz networks

Conclusion (ii)

All this is implemented in our br nd new library
https://deepinv.github.io/deepinv/!

optim
image T [@ measurement umiolded models

R =

sensing y%A(z) 2

device(s) ——> SEAMCEE —> OS850

[oe]

supervised self-supervised

o] 1]0] 11 B

nog

ey | >
denoiser

(v, 4)

Conclusion
[e]e] Ie]

reconstruction

metric

uncertainty

|sampling

21

https://deepinv.github.io/deepinv/

Introduction Learning resolvent networks Beyond 1-Lipschitz networks
0000000 0000000 0000

Conclusion
Conclusion (ii)

All this is implemented in our br nd new library
https://deepinv.github.io/deepinv/!

optim
image &

physics| measurement [u nfolded] Sl reconstruction
. o Q ‘el ‘o]
NG
sensing | y ~ A(z) |8 : - w4
device(s) —————> & o= -

O

o

I ‘ test| metric
loss

uncertainty
supervised self-supervised @

o] 1] 2] BiER. g <[>

i : denoiser sampling

Thank you!

21

https://deepinv.github.io/deepinv/

Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion
0000000 0000000 0000 [eJe]e]]

References

e 1-Lipschitz denoisers and PnP: https://arxiv.org/abs/2012.13247

e Equivariant PnP: https://arxiv.org/abs/2312.01831

22

	Introduction
	Learning resolvent networks
	Beyond 1-Lipschitz networks
	Conclusion

