Lipschitz neural networks for image restoration

M. Terris[†] joint works with T. Moreau, J. Tachella, et al.

[†]INRIA

SCAI February 2024 Paris, France

Introduction
000000

Introduction

Introduction	
0000000	

Inverse imaging problems

Imaging problems: recover x given observation z as

z = Hx + e

with $H \colon \mathbb{R}^n \to \mathbb{K}^m$ linear, $e \in \mathbb{K}^m$ realisation of random noise.

Aim: recover an estimate of x from z.

Introduction 0000000 Conclusion 0000

Inverse imaging problems

Imaging problems: recover x given observation z as

z = Hx + e

with $H \colon \mathbb{R}^n \to \mathbb{K}^m$ linear, $e \in \mathbb{K}^m$ realisation of random noise.

Aim: recover an estimate of x from z.



Introduction 0000000 Conclusion 0000

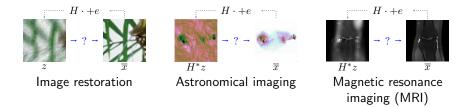
Inverse imaging problems

Imaging problems: recover x given observation z as

z = Hx + e

with $H \colon \mathbb{R}^n \to \mathbb{K}^m$ linear, $e \in \mathbb{K}^m$ realisation of random noise.

Aim: recover an estimate of x from z.



How do we solve such problem?

Aim: recover an estimate \hat{x} of x from z as

Introduction

Learning resolvent networks

$$z = Hx + e$$

Beyond 1-Lipschitz networks

Beyond 1-Lipschitz networks

Aim: recover an estimate \hat{x} of x from z as

Introduction

000000

z = Hx + e

An estimate can be found through p(x|z). For example, a maximum-a-posteriori approach gives:

Learning resolvent networks

 $\operatorname*{arg\,max}_{x} \log p(x|z) = \operatorname*{arg\,min}_{x} - \log p(z|x) - \log p(x)$

Aim: recover an estimate \hat{x} of x from z as

Introduction

000000

z = Hx + e

An estimate can be found through p(x|z). For example, a maximum-a-posteriori approach gives:

Learning resolvent networks

$$\underset{x}{\arg\max} \log p(x|z) = \underset{x}{\arg\min} - \log p(z|x) - \log p(x)$$

Reformulation as a mimization problem:

$$\widehat{x} = \underset{x}{\operatorname{argmin}} \quad f(x) + r(x)$$

$$\underline{\text{data-fidelity}} \quad \boxed{\text{regularizer (prior)}}$$

Aim: recover an estimate \hat{x} of x from z as

z = Hx + e

An estimate can be found through p(x|z). For example, a maximum-a-posteriori approach gives:

Learning resolvent networks

$$\underset{x}{\arg\max} \log p(x|z) = \underset{x}{\arg\min} - \log p(z|x) - \log p(x)$$

Reformulation as a mimization problem:

$$\widehat{x} = \underset{x}{\operatorname{argmin}} \begin{array}{c} f(x) + r(x) \\ \hline \\ \text{data-fidelity} \end{array} + r(x) \\ \hline \\ regularizer (prior) \end{array}$$

Classical choice:

Introduction

•
$$f(x) = \frac{1}{2} ||Hx - z||^2$$

• $r(x) = \lambda \operatorname{TV}(x)$, $r(x) = \lambda \|\Psi x\|_1$...

Aim: recover an estimate \hat{x} of x from z as

Introduction

z = Hx + e

An estimate can be found through p(x|z). For example, a maximum-a-posteriori approach gives:

Learning resolvent networks

$$\underset{x}{\arg\max} \log p(x|z) = \underset{x}{\arg\min} - \log p(z|x) - \log p(x)$$

Reformulation as a mimization problem:

$$\widehat{x} = \underset{x}{\operatorname{argmin}} \quad f(x) + r(x)$$

$$\underbrace{\operatorname{data-fidelity}}_{x} \quad \operatorname{regularizer} (\operatorname{prior})$$

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = \operatorname{prox}_{\gamma r} \left(x_k - \gamma \nabla f(x_k) \right) \quad (\mathsf{PGD})$$

Introduction	
0000000	

Beyond 1-Lipschitz networks 0000 Conclusion 0000

Illustration

Let's solve one image deconvolution problem with

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = \operatorname{prox}_{\gamma r} (x_k - \gamma \nabla f(x_k))$$
 (PGD)

and we choose r(x) = TV(x).

Beyond 1-Lipschitz networks 0000 Conclusion 0000

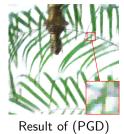
Illustration

Let's solve one image deconvolution problem with

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = \operatorname{prox}_{\gamma r} (x_k - \gamma \nabla f(x_k))$$
 (PGD)

and we choose r(x) = TV(x).

 $z=H\overline{x}+e$



 \overline{x}

Beyond 1-Lipschitz networks 0000 Conclusion 0000

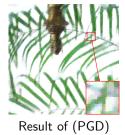
Illustration

Let's solve one image deconvolution problem with

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = \operatorname{prox}_{\gamma r} (x_k - \gamma \nabla f(x_k))$$
 (PGD)

and we choose r(x) = TV(x).

 $z=H\overline{x}+e$



 \overline{x}

Can we do better?

Introduction
0000000

Beyond 1-Lipschitz networks

Conclusion 0000

PnP algorithms

Introduction	
0000000	

Beyond 1-Lipschitz networks

Conclusion 0000

PnP algorithms

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = \operatorname{prox}_{\gamma r} \left(\frac{x_k - \gamma \nabla f(x_k)}{\gamma \nabla f(x_k)} \right)$$
 (PGD)

Introduction	
0000000	

Beyond 1-Lipschitz networks

Conclusion 0000

PnP algorithms

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = \operatorname{prox}_{\gamma r} \left(\frac{x_k - \gamma \nabla f(x_k)}{\gamma \nabla f(x_k)} \right)$$
 (PGD)

Introduction	
0000000	

Beyond 1-Lipschitz networks

Conclusion 0000

PnP algorithms

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = J\left(x_k - \gamma \nabla f(x_k)\right)$$
 (PnP-PGD)

Introduction	
0000000	

Beyond 1-Lipschitz networks

Conclusion 0000

PnP algorithms

Replace the proximity operator by a powerful denoiser:

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = J\left(x_k - \gamma \nabla f(x_k)\right)$$
 (PnP-PGD)

Usually, J is a deep neural network (DNN). But why a denoiser?

Beyond 1-Lipschitz network

Conclusion 0000

PnP algorithms

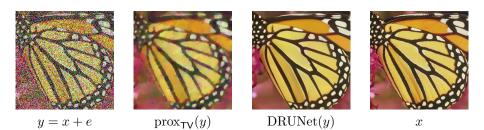
Introduction

0000000

Replace the proximity operator by a powerful denoiser:

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = J\left(x_k - \gamma \nabla f(x_k)\right)$$
 (PnP-PGD)

Usually, J is a deep neural network (DNN). But why a denoiser?



Introduction 0000000 Learning resolvent networks

Beyond 1-Lipschitz network

Conclusion 0000

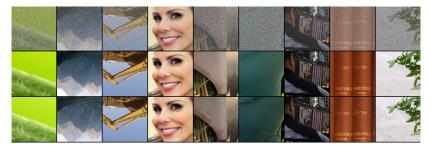
PnP algorithms

Replace the proximity operator by a powerful denoiser:

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = J\left(x_k - \gamma \nabla f(x_k)\right)$$
 (PnP-PGD)

Usually, J is a deep neural network (DNN). But why a denoiser?

Because it is very easy to train!



Beyond 1-Lipschitz network

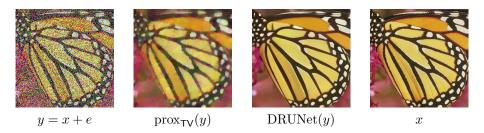
Conclusion 0000

PnP algorithms

Replace the proximity operator by a powerful denoiser:

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = J\left(x_k - \gamma \nabla f(x_k)\right)$$
 (PnP-PGD)

Usually, J is a deep neural network (DNN). But why a denoiser?



Take home message 1: denoisers act as implicit priors!

Introduction	
0000000	

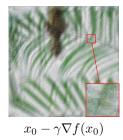
Beyond 1-Lipschitz networks

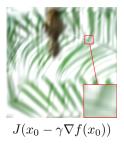
Conclusion 0000

PnP algorithms: illustration

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = J(x_k - \gamma \nabla f(x_k))$$

 $z=H\overline{x}+e$





Introduction	
0000000	

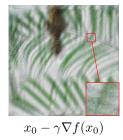
Beyond 1-Lipschitz networks

Conclusion 0000

PnP algorithms: illustration

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = J(x_k - \gamma \nabla f(x_k))$$

 $z=H\overline{x}+e$



Introduction	
0000000	

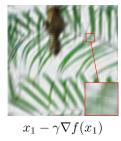
Beyond 1-Lipschitz networks 0000

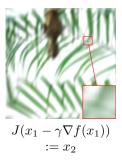
Conclusion 0000

PnP algorithms: illustration

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = J(x_k - \gamma \nabla f(x_k))$$

 $z=H\overline{x}+e$





Introduction	
0000000	

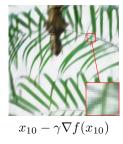
Beyond 1-Lipschitz networks 0000

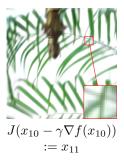
Conclusion 0000

PnP algorithms: illustration

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = J(x_k - \gamma \nabla f(x_k))$$

 $z=H\overline{x}+e$





Introduction	
0000000	

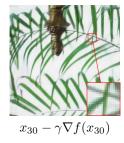
Beyond 1-Lipschitz networks 0000

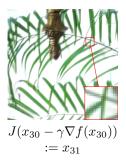
Conclusion 0000

PnP algorithms: illustration

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = J(x_k - \gamma \nabla f(x_k))$$

 $z=H\overline{x}+e$





Introduction	
0000000	

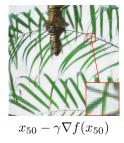
Beyond 1-Lipschitz networks

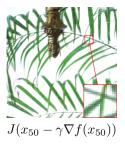
Conclusion 0000

PnP algorithms: illustration

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = J(x_k - \gamma \nabla f(x_k))$$

 $z=H\overline{x}+e$





Introduction
0000000

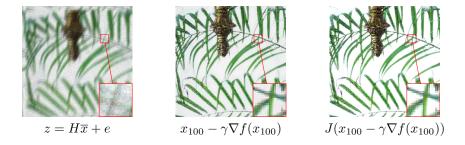
Beyond 1-Lipschitz networks

Conclusion 0000

PnP algorithms: illustration

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = J(x_k - \gamma \nabla f(x_k))$$

where J = DRUNet.



Introduction
0000000

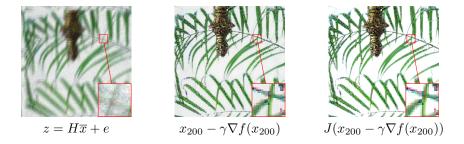
Beyond 1-Lipschitz networks

Conclusion 0000

PnP algorithms: illustration

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = J(x_k - \gamma \nabla f(x_k))$$

where J = DRUNet.



Introduction	
0000000	

Beyond 1-Lipschitz networks

Conclusion 0000

PnP algorithms: illustration

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = J(x_k - \gamma \nabla f(x_k))$$

where J = DRUNet.

Introduction
0000000

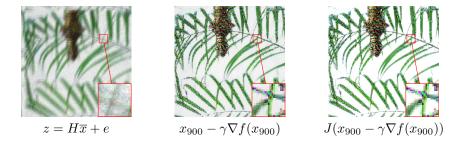
Beyond 1-Lipschitz networks

Conclusion 0000

PnP algorithms: illustration

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = J(x_k - \gamma \nabla f(x_k))$$

where J = DRUNet.



Introduction
0000000

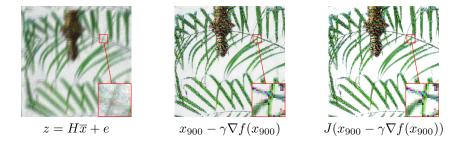
Beyond 1-Lipschitz network

Conclusion 0000

PnP algorithms: illustration

$$(\forall k \in \mathbb{N}) \quad x_{k+1} = J(x_k - \gamma \nabla f(x_k))$$

where J = DRUNet.



Nice results after ~ 50 iterations, but does not converge...

This raises many questions!

Introduction
000000

In this presentation

Questions:

- How to solve the non-convergence problem?
- Can one restore the link between a prior and the DNN in the PnP algorithm?
- Do we really need constraints?

Outline:

- Resolvent architectures through 1-Lip regularisation (arxiv 2012.13247)
- 2. Beyond Lipschitz constraints (arxiv 2312.01831)

Int	tro	bd	uc	tio	n
0	0	OC		0	0

In	tro	du	cti	or	1
0	00	00	00	C	C

Beyond 1-Lipschitz networks

Conclusion 0000

Convergence and characterisation

$$x_{k+1} = J_{\theta}(x_k - \gamma \nabla f(x_k))$$
 (PnP-PGD)

0000000		0000	0000
Convergence and	l characterisation	า	

$$x_{k+1} = J_{\theta}(x_k - \gamma \nabla f(x_k))$$
 (PnP-PGD)

Definition

We say that $J_{\theta} \colon \mathcal{H} \to \mathcal{H}$ is firmly nonexpansive it there exists a 1-Lipschitz operator $Q_{\theta} \colon \mathcal{H} \to \mathcal{H}$ such that $J_{\theta} = \frac{\mathrm{Id} + Q_{\theta}}{2}.$

Introduction 0000000	OOOOOOO	OOOO	0000
Convergence and	d characterisati	on	

$$x_{k+1} = J_{\theta}(x_k - \gamma \nabla f(x_k))$$
 (PnP-PGD)

Definition

We say that $J_{\theta} \colon \mathcal{H} \to \mathcal{H}$ is firmly nonexpansive it there exists a 1-Lipschitz operator $Q_{\theta} \colon \mathcal{H} \to \mathcal{H}$ such that $J_{\theta} = \frac{\mathrm{Id} + Q_{\theta}}{2}.$

Theorem (informal)

If J_{θ} is firmly nonexpansive and γ is small enough, there exists a convex function g_{θ} such that $(x_k)_{k\in\mathbb{N}}$ in (PnP-PGD) converges to $x\in\mathbb{R}^N$ satisfying

 $0 \in \mathbf{\gamma} \nabla f(x) + \partial g_{\theta}(x).$

	Introduction 0000000	Learning resolvent networks	Beyond 1-Lipschitz networks	Conclusion 0000
How to	o?			

Goal:

Build a DNN denoiser J, i.e. 2J - Id is 1-Lipschitz.

Two possible approaches

	Introduction 0000000	Learning resolvent networks 0000000	Beyond 1-Lipschitz networks	Conclusion 0000
How to	o?			

Goal:

Build a DNN denoiser J, i.e. 2J - Id is 1-Lipschitz.

Two possible approaches

A tight approach

Define an architecture of J s.t.

$$J = \frac{\mathrm{Id} + Q}{2}$$

with Q 1-Lipschitz.

	Introduction 0000000	Learning resolvent networks	Beyond 1-Lipschitz networks 0000	Conclusion 0000
How to	o?			

Goal:

Build a DNN denoiser J, i.e. 2J - Id is 1-Lipschitz.

Two possible approaches

A tight approach

Define an architecture of J s.t.

$$J = \frac{\operatorname{Id} + Q}{2}$$

with Q 1-Lipschitz.

A relaxed approach

Regularise the training loss as

 $loss_{usual} + \lambda \operatorname{Lip}(2J - \operatorname{Id})$

Applies to **any kind** of architecture (but not tight...).

In	tro	duc	tior	1
0	oc	000	00	С

Goal: build a DNN denoiser J s.t. 2J - Id is 1-Lipschitz, regardless of the architecture.

Goal: build a DNN denoiser J s.t. 2J - Id is 1-Lipschitz, regardless of the architecture.

Step 1: Training dataset (\overline{x}, y) :

- x: groundtruth (target) image;
- $y = x + \sigma n$: noisy image.

Goal: build a DNN denoiser J s.t. 2J - Id is 1-Lipschitz, regardless of the architecture.

Step 1: Training dataset (\overline{x}, y) :

- x: groundtruth (target) image;
- $y = x + \sigma n$: noisy image.

Step 2: Proposed training loss:

$$\underset{\theta \in \mathbb{R}^{P}}{\text{minimize}} \frac{1}{L} \sum_{\ell=1}^{L} \frac{\|J_{\theta}(y_{\ell}) - x_{\ell}\|_{1}}{\text{denoising}} + \frac{\lambda \max\left\{\|\nabla Q_{\theta}(y_{\ell})\|^{2}, 1 - \varepsilon\right\}}{\text{relaxed}}$$

where $Q_{\theta} = 2J_{\theta} - \mathrm{Id}$, and where $\nabla(\cdot)$ denotes the Jacobian operator.

Goal: build a DNN denoiser J s.t. 2J - Id is 1-Lipschitz, regardless of the architecture.

Step 1: Training dataset (\overline{x}, y) :

- x: groundtruth (target) image;
- $y = x + \sigma n$: noisy image.

Step 2: Proposed training loss:

$$\underset{\theta \in \mathbb{R}^{P}}{\text{minimize}} \frac{1}{L} \sum_{\ell=1}^{L} \|J_{\theta}(y_{\ell}) - x_{\ell}\|_{1} + \frac{\lambda \max\left\{\|\nabla Q_{\theta}(y_{\ell})\|^{2}, 1 - \varepsilon\right\}}{\text{denoising}}$$

$$relaxed 1-Lip \text{ constraint}$$

where $Q_{\theta} = 2J_{\theta} - \mathrm{Id}$, and where $\boldsymbol{\nabla}(\cdot)$ denotes the Jacobian operator.

 $\|\nabla Q_{\theta}(x_{\ell})\|$ is an approximation of the Lipschitz constant of $Q = 2J - \mathrm{Id}$

Goal: build a DNN denoiser J s.t. 2J - Id is 1-Lipschitz, regardless of the architecture.

Step 1: Training dataset (\overline{x}, y) :

- x: groundtruth (target) image;
- $y = x + \sigma n$: noisy image.

Step 2: Proposed training loss:

$$\underset{\theta \in \mathbb{R}^{P}}{\text{minimize}} \frac{1}{L} \sum_{\ell=1}^{L} \|J_{\theta}(y_{\ell}) - x_{\ell}\|_{1} + \frac{\lambda \max\left\{\|\nabla Q_{\theta}(y_{\ell})\|^{2}, 1 - \varepsilon\right\}}{\text{denoising}}$$

$$relaxed 1-Lip \text{ constraint}$$

where $Q_{\theta} = 2J_{\theta} - \text{Id}$, and where $\nabla(\cdot)$ denotes the Jacobian operator.

 $\|\nabla Q_{\theta}(x_{\ell})\|$ is an approximation of the Lipschitz constant of Q = 2J - Id $\|\nabla Q\| \le 1 \Rightarrow \text{ convergence of PnP}$

Introduction 0000000	Learning resolvent networks	Beyond 1-Lipschitz networks

Conclusion 0000

About the training loss...

$$\underset{\theta \in \mathbb{R}^{P}}{\text{minimize}} \frac{1}{L} \sum_{\ell=1}^{L} \frac{\|J_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|_{1}}{\text{denoising}} + \frac{\lambda \max\left\{\|\nabla Q_{\theta}(\widetilde{x}_{\ell})\|^{2}, 1 - \varepsilon\right\}}{\text{relaxed}}$$

where $\nabla(\cdot)$ denotes the Jacobian operator and $\|\nabla Q_{\theta}(\tilde{x}_{\ell})\|^2$ is an approximation of the Lipschitz constant of Q = 2J - Id.

Introduction 0000000	Learning resolvent networks	Beyond 1-Lipschitz networks

$$\underset{\theta \in \mathbb{R}^{P}}{\text{minimize}} \frac{1}{L} \sum_{\ell=1}^{L} \frac{\|J_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|_{1}}{\text{denoising}} + \frac{\lambda \max\left\{\|\nabla Q_{\theta}(\widetilde{x}_{\ell})\|^{2}, 1 - \varepsilon\right\}}{\text{relaxed} 1-\text{Lip constraint}}$$

where $\nabla(\cdot)$ denotes the Jacobian operator and $\|\nabla Q_{\theta}(\tilde{x}_{\ell})\|^2$ is an approximation of the Lipschitz constant of Q = 2J - Id.

No access to ∇Q , but we can compute $\|\nabla Q\|$ with autograd!

ntroduction	Learning resolvent networks
000000	0000000

$$\underset{\theta \in \mathbb{R}^{P}}{\text{minimize}} \frac{1}{L} \sum_{\ell=1}^{L} \frac{\|J_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|_{1}}{\text{denoising}} + \frac{\lambda \max\left\{\|\nabla Q_{\theta}(\widetilde{x}_{\ell})\|^{2}, 1 - \varepsilon\right\}}{\text{relaxed}}$$

where $\nabla(\cdot)$ denotes the Jacobian operator and $\|\nabla Q_{\theta}(\tilde{x}_{\ell})\|^2$ is an approximation of the Lipschitz constant of Q = 2J - Id.

No access to ∇Q , but we can compute $\|\nabla Q\|$ with autograd!

How?

Given a function (DNN) Q:

- the grad operation in PyTorch gives the product $u \times \operatorname{Jac}(Q)^{\top}$;
- the "double backward trick" gives $\operatorname{Jac}(Q) \times v$.

ntroduction	Learning
000000	0000

$$\underset{\theta \in \mathbb{R}^{P}}{\text{minimize}} \frac{1}{L} \sum_{\ell=1}^{L} \frac{\|J_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|_{1}}{\text{denoising}} + \frac{\lambda \max\left\{\|\nabla Q_{\theta}(\widetilde{x}_{\ell})\|^{2}, 1 - \varepsilon\right\}}{\text{relaxed} 1-\text{Lip constraint}}$$

where $\nabla(\cdot)$ denotes the Jacobian operator and $\|\nabla Q_{\theta}(\tilde{x}_{\ell})\|^2$ is an approximation of the Lipschitz constant of Q = 2J - Id.

No access to ∇Q , but we can compute $\|\nabla Q\|$ with autograd!

How?

Given a function (DNN) Q:

- the grad operation in PyTorch gives the product $u \times \operatorname{Jac}(Q)^{\top}$;
- the "double backward trick" gives $\operatorname{Jac}(Q) \times v$.

These are all the ingredients for using the power method!

Conclusion 0000

About the training loss...

$$\underset{\theta \in \mathbb{R}^{P}}{\text{minimize}} \frac{1}{L} \sum_{\ell=1}^{L} \frac{\|J_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|_{1}}{\text{denoising}} + \frac{\lambda \max\left\{\|\nabla Q_{\theta}(\widetilde{x}_{\ell})\|^{2}, 1 - \varepsilon\right\}}{\text{relaxed}}$$

where $\nabla(\cdot)$ denotes the Jacobian operator and $\|\nabla Q_{\theta}(\tilde{x}_{\ell})\|^2$ is an approximation of the Lipschitz constant of Q = 2J - Id.

No access to ∇Q , but we can compute $\|\nabla Q\|$ with autograd!

```
import torch.autograd.grad as grad
...
for n_it in range(num_iter):
    w = torch.ones_like(y, requires_grad=True)
    v = grad(grad(y, x, w, create_graph=True), w, u, create_graph=True)[0]
    v = grad(y, x, v, retain_graph=True, create_graph=True)[0]
```

Introduction	Learnin
0000000	0000

$$\underset{\theta \in \mathbb{R}^{P}}{\text{minimize}} \frac{1}{L} \sum_{\ell=1}^{L} \frac{\|J_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|_{1}}{\text{denoising}} + \frac{\lambda \max\left\{\|\nabla Q_{\theta}(\widetilde{x}_{\ell})\|^{2}, 1 - \varepsilon\right\}}{\text{relaxed}}$$

where $\nabla(\cdot)$ denotes the Jacobian operator and $\|\nabla Q_{\theta}(\tilde{x}_{\ell})\|^2$ is an approximation of the Lipschitz constant of Q = 2J - Id.

No access to ∇Q , but we can compute $\|\nabla Q\|$ with autograd!

```
import torch.autograd.grad as grad
...
for n_it in range(num_iter):
   w = torch.ones_like(y, requires_grad=True)
   v = grad(grad(y, x, w, create_graph=True), w, u, create_graph=True)[0]
   v = grad(y, x, v, retain_graph=True, create_graph=True)[0]
```

Take home message 2:

backprop allows to compute the lipschitz constant of a DNN!

Learning resolvent networks 0000000

Beyond 1-Lipschitz networks

Conclusion 0000

Influence of the Jacobian penalization

$$\begin{array}{c} \underset{\theta \in \mathbb{R}^{P}}{\text{minimize}} \ \frac{1}{L} \sum_{\ell=1}^{L} \|J_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|_{1} \\ \text{denoising} \end{array} + \frac{\lambda \max\left\{\|\nabla Q_{\theta}(\widetilde{x}_{\ell})\|^{2}, 1 - \varepsilon\right\}}{\text{relaxed} FNE \ \text{constraint}} \end{array}$$

Influence of the Jacobian penalization

$$\underset{\theta \in \mathbb{R}^{P}}{\text{minimize}} \frac{1}{L} \sum_{\ell=1}^{L} \frac{\|J_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|_{1}}{\text{denoising}} + \frac{\lambda \max\left\{\|\nabla Q_{\theta}(\widetilde{x}_{\ell})\|^{2}, 1 - \varepsilon\right\}}{\text{relaxed} FNE \text{ constraint}}$$

Convergence of PnP depending on the value of λ .

• Deblurring problem: \overline{x} from BSD10 test set

Influence of the Jacobian penalization

Convergence of PnP depending on the value of λ .

•
$$c_k = \|x_k - x_{k-1}\| / \|x_0\|$$
, for $(x_k)_{k \in \mathbb{N}}$ should be monotone

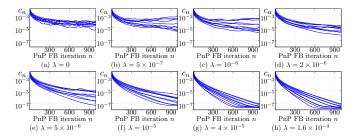
Influence of the Jacobian penalization

$$\underset{\theta \in \mathbb{R}^{P}}{\text{minimize}} \frac{1}{L} \sum_{\ell=1}^{L} \|J_{\theta}(y_{\ell}) - \overline{x}_{\ell}\|_{1} + \frac{\lambda \max\left\{\|\nabla Q_{\theta}(\widetilde{x}_{\ell})\|^{2}, 1 - \varepsilon\right\}}{\text{denoising}}$$

$$relaxed FNE \text{ constraint}$$

Convergence of PnP depending on the value of λ .

•
$$c_k = \|x_k - x_{k-1}\| / \|x_0\|$$
, for $(x_k)_{k \in \mathbb{N}}$ should be monotone



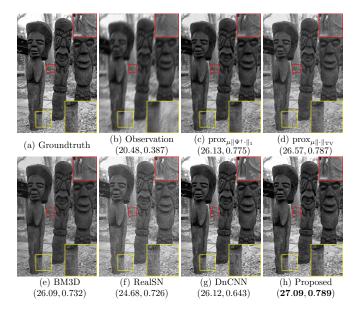
https://arxiv.org/abs/2012.13247

Learning resolvent networks

Beyond 1-Lipschitz networks

Conclusion 0000

Visual results



In	tr	oc	lu	ct	io	n
0	0	0	0	0	0	0

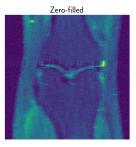
Beyond 1-Lipschitz networks

Learning resolvent networks 0000000

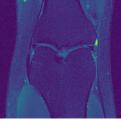
Beyond 1-Lipschitz networks

Conclusion 0000

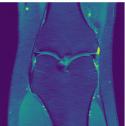
Do we really need 1 Lipschitz?

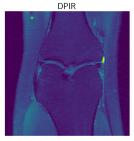


Groundtruth



UNet





Do we really need 1 Lipschitz?

- 2 antagonist observations:
 - DNNs seem to behave like proximity operators from far, but they are not 1-Lipschitz.
 - Imposing 1-Lipschitz constraints solves the unstability issue, but lowers performance.

oduction Learning resolver

Learning resolvent networks

Beyond 1-Lipschitz networks

Conclusion 0000

Do we really need 1 Lipschitz?

Idea: Imaging priors should have some invariance properties with respect to certain groups of transformations, such as rotations, translations, and reflections. We denote these transformations associated with a group \mathcal{G} , $\{T_g\}_{g\in\mathcal{G}}$ where $T_g\in\mathbb{R}^{n\times n}$ is a unitary matrix.

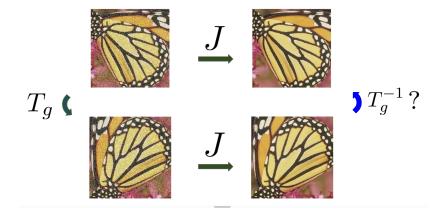
Learning resolvent networks

Beyond 1-Lipschitz networks

Conclusion 0000

Do we really need 1 Lipschitz?

Idea: Imaging priors should have some invariance properties with respect to certain groups of transformations, such as rotations, translations, and reflections. We denote these transformations associated with a group \mathcal{G} , $\{T_g\}_{g\in\mathcal{G}}$ where $T_g\in\mathbb{R}^{n\times n}$ is a unitary matrix.



roduction Learning resolvent networks

Beyond 1-Lipschitz networks

Conclusion 0000

Do we really need 1 Lipschitz?

Idea: Imaging priors should have some invariance properties with respect to certain groups of transformations, such as rotations, translations, and reflections. We denote these transformations associated with a group \mathcal{G} , $\{T_g\}_{g\in\mathcal{G}}$ where $T_g\in\mathbb{R}^{n\times n}$ is a unitary matrix.

Definition

We say that J is equivariant to the group action $\{T_g\}_{g\in\mathcal{G}}$ if $J(T_gx) = T_gJ(x)$ for all x and $g\in\mathcal{G}$.

Learning resolvent networks 0000000

Beyond 1-Lipschitz networks

Conclusion 0000

Do we really need 1 Lipschitz?

Any operator J can be made $\mathcal{G}\text{-equivariant}$ through this averaging procedure:

$$J_{\mathcal{G}}(x) \stackrel{\text{def}}{=} \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} T_g^{-1} J(T_g x).$$
(1)

Learning resolvent networks 0000000

Beyond 1-Lipschitz networks

Conclusion 0000

Do we really need 1 Lipschitz?

Any operator J can be made $\mathcal{G}\text{-equivariant}$ through this averaging procedure:

$$J_{\mathcal{G}}(x) \stackrel{\text{def}}{=} \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} T_g^{-1} J(T_g x).$$
(1)

Why can it help?

Conclusion 0000

Do we really need 1 Lipschitz?

Any operator J can be made $\mathcal{G}\text{-equivariant}$ through this averaging procedure:

$$J_{\mathcal{G}}(x) \stackrel{\text{def}}{=} \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} T_g^{-1} J(T_g x).$$
(1)

Why can it help?

Proposition

Assume that J is a linear denoiser with singular value decomposition $J = \sum_{i=1}^{n} \lambda_i u_i v_i^{\top}$ and $\lambda_1 > \lambda_2 \ge \cdots \ge \lambda_n \ge 0$. If the principal component $u_1 v_1^{\top}$ is not \mathcal{G} -equivariant, then the averaged denoiser $J_{\mathcal{G}}$ has a strictly smaller Lipschitz constant than J.

Conclusion 0000

Do we really need 1 Lipschitz?

Any operator J can be made $\mathcal{G}\text{-equivariant}$ through this averaging procedure:

$$J_{\mathcal{G}}(x) \stackrel{\text{def}}{=} \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} T_g^{-1} J(T_g x).$$
(1)

Why can it help?

Proposition

Assume that J is a linear denoiser with singular value decomposition $J = \sum_{i=1}^{n} \lambda_i u_i v_i^{\top}$ and $\lambda_1 > \lambda_2 \ge \cdots \ge \lambda_n \ge 0$. If the principal component $u_1 v_1^{\top}$ is not \mathcal{G} -equivariant, then the averaged denoiser $J_{\mathcal{G}}$ has a strictly smaller Lipschitz constant than J.

Take home meassage 3: Equivariance can reduce the Lipschitz constant!

Introduction Learning resolvent networks 0000000 0000000 Beyond 1-Lipschitz networks $000 \bullet$

Conclusion 0000

Results

Equivariant PnP:

Sample
$$g_k \sim \mathcal{G}$$

Set $\widetilde{J}_{\mathcal{G},k}(x) = T_{g_k}^{-1} J(T_{g_k} x)$ (eq. PnP-PGD)
 $x_{k+1} = \widetilde{J}_{\mathcal{G},k} \left(x_k - \gamma A^{\top} (Ax_k - y) \right).$

Learning resolvent networks 0000000

Beyond 1-Lipschitz networks

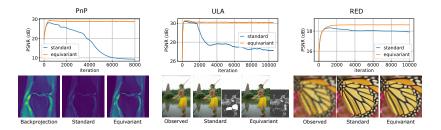
Conclusion 0000

Results

Equivariant PnP:

Sample
$$g_k \sim \mathcal{G}$$

Set $\widetilde{J}_{\mathcal{G},k}(x) = T_{g_k}^{-1} J(T_{g_k} x)$ (eq. PnP-PGD)
 $x_{k+1} = \widetilde{J}_{\mathcal{G},k} \left(x_k - \gamma A^{\top} (Ax_k - y) \right).$



https://arxiv.org/abs/2312.01831

In	tr	od	lu	ct	io	n
0	0	0	0	0	0	0

Conclusion

Conclusion (i)

We have shown:

- 1-Lipschitz denoisers yield convergent PnP algorithms;
- Equivariance can lower the Lipschitz constant of denoisers.

Conclusion (i)

We have shown:

- 1-Lipschitz denoisers yield convergent PnP algorithms;
- Equivariance can lower the Lipschitz constant of denoisers.

But more than this:

- We aim at solving problems of the form y = Ax + e;
- Minimization problems of the form $\mathop{\arg\min}_x f(x) + g(x)$ are replaced with PnP
- Applied for 2D, 3D, 3D+time imaging problems...

Conclusion (i)

We have shown:

- 1-Lipschitz denoisers yield convergent PnP algorithms;
- Equivariance can lower the Lipschitz constant of denoisers.

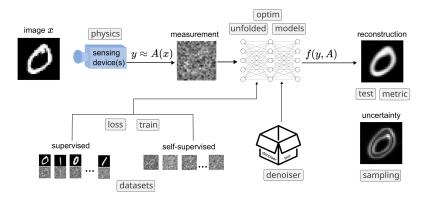
But more than this:

- We aim at solving problems of the form y = Ax + e;
- Minimization problems of the form $\mathop{\arg\min}_x f(x) + g(x)$ are replaced with PnP
- Applied for 2D, 3D, 3D+time imaging problems...

but how about other problems?

Conclusion (ii)

All this is implemented in our **brand new** library https://deepinv.github.io/deepinv/!



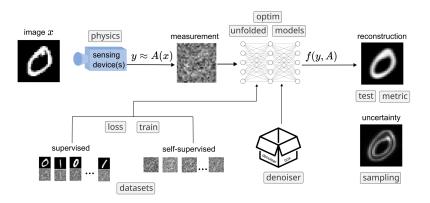
Learning resolvent networks 0000000

Beyond 1-Lipschitz network

Conclusion

Conclusion (ii)

All this is implemented in our **brand new** library https://deepinv.github.io/deepinv/!



Thank you!

In	tro	duo	ctio	n
C	00	00	00	0

References

- 1-Lipschitz denoisers and PnP: https://arxiv.org/abs/2012.13247
- Equivariant PnP: https://arxiv.org/abs/2312.01831