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Inverse imaging problems

Imaging problems: recover x given observation z as

z = Hx+ e

with H : Rn → Km linear, e ∈ Km realisation of random noise.

Aim: recover an estimate of x from z.
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Inverse imaging problems

Imaging problems: recover x given observation z as

z = Hx+ e

with H : Rn → Km linear, e ∈ Km realisation of random noise.

Aim: recover an estimate of x from z.

?

H ·+e

z x

Image restoration

?

H ·+e

H∗z x

Astronomical imaging

?

H ·+e

H∗z x

Magnetic resonance
imaging (MRI)

How do we solve such problem?
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The optimisation approach: towards plug-and-play (PnP)

Aim: recover an estimate x̂ of x from z as

z = Hx+ e
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The optimisation approach: towards plug-and-play (PnP)

Aim: recover an estimate x̂ of x from z as

z = Hx+ e

An estimate can be found through p(x|z). For example, a
maximum-a-posteriori approach gives:

argmax
x

log p(x|z) = argmin
x

− log p(z|x)− log p(x)
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Reformulation as a mimization problem:
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f(x) + r(x)

data-fidelity regularizer (prior)
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The optimisation approach: towards plug-and-play (PnP)

Aim: recover an estimate x̂ of x from z as

z = Hx+ e

An estimate can be found through p(x|z). For example, a
maximum-a-posteriori approach gives:

argmax
x

log p(x|z) = argmin
x

− log p(z|x)− log p(x)

Reformulation as a mimization problem:

x̂ = argmin
x

f(x) + r(x)

data-fidelity regularizer (prior)

Classical choice:

• f(x) = 1
2∥Hx− z∥2

• r(x) = λTV(x), r(x) = λ∥Ψx∥1...
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The optimisation approach: towards plug-and-play (PnP)

Aim: recover an estimate x̂ of x from z as

z = Hx+ e

An estimate can be found through p(x|z). For example, a
maximum-a-posteriori approach gives:

argmax
x

log p(x|z) = argmin
x

− log p(z|x)− log p(x)

Reformulation as a mimization problem:

x̂ = argmin
x

f(x) + r(x)

data-fidelity regularizer (prior)

(∀k ∈ N) xk+1 = proxγr

(
xk − γ∇f(xk)

)
(PGD)
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Illustration

Let’s solve one image deconvolution problem with

(∀k ∈ N) xk+1 = proxγr (xk − γ∇f(xk)) (PGD)

and we choose r(x) = TV(x).
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z = Hx+ e Result of (PGD) x
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Illustration

Let’s solve one image deconvolution problem with

(∀k ∈ N) xk+1 = proxγr (xk − γ∇f(xk)) (PGD)

and we choose r(x) = TV(x).

z = Hx+ e Result of (PGD) x

Can we do better?
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PnP algorithms

Replace the proximity operator by a powerful denoiser:
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Usually, J is a deep neural network (DNN). But why a denoiser?
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PnP algorithms

Replace the proximity operator by a powerful denoiser:

(∀k ∈ N) xk+1 = J
(
xk − γ∇f(xk)

)
(PnP-PGD)

Usually, J is a deep neural network (DNN). But why a denoiser?

y = x+ e proxTV(y) DRUNet(y) x
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PnP algorithms

Replace the proximity operator by a powerful denoiser:

(∀k ∈ N) xk+1 = J
(
xk − γ∇f(xk)

)
(PnP-PGD)

Usually, J is a deep neural network (DNN). But why a denoiser?

Because it is very easy to train!
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PnP algorithms

Replace the proximity operator by a powerful denoiser:

(∀k ∈ N) xk+1 = J
(
xk − γ∇f(xk)

)
(PnP-PGD)

Usually, J is a deep neural network (DNN). But why a denoiser?

y = x+ e proxTV(y) DRUNet(y) x

Take home message 1: denoisers act as implicit priors!
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PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x0 − γ∇f(x0) J(x0 − γ∇f(x0))
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PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x0 − γ∇f(x0) J(x0 − γ∇f(x0))
:= x1
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PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x10 − γ∇f(x10) J(x10 − γ∇f(x10))
:= x11
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PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x30 − γ∇f(x30) J(x30 − γ∇f(x30))
:= x31
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PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x50 − γ∇f(x50) J(x50 − γ∇f(x50))
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PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x100 − γ∇f(x100) J(x100 − γ∇f(x100))

Nice results after ∼ 50 iterations, but does not converge...
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PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x200 − γ∇f(x200) J(x200 − γ∇f(x200))

Nice results after ∼ 50 iterations, but does not converge...

6



Introduction Learning resolvent networks Beyond 1-Lipschitz networks Conclusion

PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x300 − γ∇f(x300) J(x300 − γ∇f(x300))

Nice results after ∼ 50 iterations, but does not converge...
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PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x900 − γ∇f(x900) J(x900 − γ∇f(x900))

Nice results after ∼ 50 iterations, but does not converge...
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PnP algorithms: illustration

(∀k ∈ N) xk+1 = J (xk − γ∇f(xk))

where J = DRUNet.

z = Hx+ e x900 − γ∇f(x900) J(x900 − γ∇f(x900))

Nice results after ∼ 50 iterations, but does not converge...

This raises many questions!
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In this presentation

Questions:

• How to solve the non-convergence problem?

• Can one restore the link between a prior and the DNN in the PnP
algorithm?

• Do we really need constraints?

Outline:

1. Resolvent architectures through 1-Lip regularisation (arxiv
2012.13247)

2. Beyond Lipschitz constraints (arxiv 2312.01831)
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Learning resolvent networks
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Convergence and characterisation

xk+1 = Jθ(xk − γ∇f(xk)) (PnP-PGD)
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Convergence and characterisation

xk+1 = Jθ(xk − γ∇f(xk)) (PnP-PGD)

Definition

We say that Jθ : H → H is firmly nonexpansive it there exists a
1-Lipschitz operator Qθ : H → H such that

Jθ =
Id+Qθ

2
.
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Convergence and characterisation

xk+1 = Jθ(xk − γ∇f(xk)) (PnP-PGD)

Definition

We say that Jθ : H → H is firmly nonexpansive it there exists a
1-Lipschitz operator Qθ : H → H such that

Jθ =
Id+Qθ

2
.

Theorem (informal)

If Jθ is firmly nonexpansive and γ is small enough, there exists a convex
function gθ such that (xk)k∈N in (PnP-PGD) converges to x ∈ RN

satisfying
0 ∈ γ∇f(x) + ∂gθ(x).
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How to?

Goal:

Build a DNN denoiser J , i.e. 2J − Id is 1-Lipschitz.

Two possible approaches
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How to?

Goal:

Build a DNN denoiser J , i.e. 2J − Id is 1-Lipschitz.

Two possible approaches

A tight approach

Define an architecture of J s.t.

J =
Id+Q

2

with Q 1-Lipschitz.
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How to?

Goal:

Build a DNN denoiser J , i.e. 2J − Id is 1-Lipschitz.

Two possible approaches

A tight approach

Define an architecture of J s.t.

J =
Id+Q

2

with Q 1-Lipschitz.

A relaxed approach

Regularise the training loss as

lossusual + λLip(2J − Id)

Applies to any kind of architecture
(but not tight...).
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Application to denoising

Goal: build a DNN denoiser J s.t. 2J − Id is 1-Lipschitz, regardless of
the architecture.

Step 1: Training dataset (x, y):

• x: groundtruth (target) image;

• y = x+ σn: noisy image.

Step 2: Proposed training loss:

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(yℓ)∥2, 1− ε

}
denoising relaxed 1-Lip constraint

where Qθ = 2Jθ − Id, and where ∇∇∇(·) denotes the Jacobian operator.

∥∇∇∇Qθ(xℓ)∥ is an approximation of the Lipschitz constant of Q = 2J − Id

∥∇∇∇Q∥ ≤ 1 ⇒ convergence of PnP
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About the training loss...

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(x̃ℓ)∥2, 1− ε

}
denoising relaxed 1-Lip constraint

where ∇∇∇(·) denotes the Jacobian operator and ∥∇∇∇Qθ(x̃ℓ)∥2 is an
approximation of the Lipschitz constant of Q = 2J − Id.
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• the grad operation in PyTorch gives the product u× Jac(Q)⊤;

• the “double backward trick” gives Jac(Q)× v.
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About the training loss...

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(x̃ℓ)∥2, 1− ε

}
denoising relaxed 1-Lip constraint

where ∇∇∇(·) denotes the Jacobian operator and ∥∇∇∇Qθ(x̃ℓ)∥2 is an
approximation of the Lipschitz constant of Q = 2J − Id.

No access to ∇∇∇Q, but we can compute ∥∇∇∇Q∥ with autograd!

How?
Given a function (DNN) Q:

• the grad operation in PyTorch gives the product u× Jac(Q)⊤;

• the “double backward trick” gives Jac(Q)× v.

These are all the ingredients for using the power method!
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About the training loss...

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(x̃ℓ)∥2, 1− ε

}
denoising relaxed 1-Lip constraint

where ∇∇∇(·) denotes the Jacobian operator and ∥∇∇∇Qθ(x̃ℓ)∥2 is an
approximation of the Lipschitz constant of Q = 2J − Id.

No access to ∇∇∇Q, but we can compute ∥∇∇∇Q∥ with autograd!

import torch.autograd.grad as grad

...

for n it in range(num iter):

w = torch.ones like(y, requires grad=True)

v = grad(grad(y, x, w, create graph=True), w, u, create graph=True)[0]

v = grad(y, x, v, retain graph=True, create graph=True)[0]
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About the training loss...

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(x̃ℓ)∥2, 1− ε

}
denoising relaxed 1-Lip constraint

where ∇∇∇(·) denotes the Jacobian operator and ∥∇∇∇Qθ(x̃ℓ)∥2 is an
approximation of the Lipschitz constant of Q = 2J − Id.

No access to ∇∇∇Q, but we can compute ∥∇∇∇Q∥ with autograd!

import torch.autograd.grad as grad

...

for n it in range(num iter):

w = torch.ones like(y, requires grad=True)

v = grad(grad(y, x, w, create graph=True), w, u, create graph=True)[0]

v = grad(y, x, v, retain graph=True, create graph=True)[0]

Take home message 2:
backprop allows to compute the lipschitz constant of a DNN!
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Influence of the Jacobian penalization

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(x̃ℓ)∥2, 1− ε

}
denoising relaxed FNE constraint
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Influence of the Jacobian penalization

minimize
θ∈RP

1

L

L∑
ℓ=1

∥Jθ(yℓ)− xℓ∥1 + λmax
{
∥∇∇∇Qθ(x̃ℓ)∥2, 1− ε

}
denoising relaxed FNE constraint

Convergence of PnP depending on the value of λ.

☛ Deblurring problem: x from BSD10 test set
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☛ ck = ∥xk − xk−1∥/∥x0∥, for (xk)k∈N should be monotone
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(e) λ = 5× 10−6 (f) λ = 10−5 (g) λ = 4× 10−5 (h) λ = 1.6× 10−4

https://arxiv.org/abs/2012.13247
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Visual results

(a) Groundtruth
(b) Observation
(20.48, 0.387)

(c) proxµ‖Ψ†·‖1
(26.13, 0.775)

(d) proxµ‖·‖TV

(26.57, 0.787)

(e) BM3D
(26.09, 0.732)

(f) RealSN
(24.68, 0.726)

(g) DnCNN
(26.12, 0.643)

(h) Proposed
(27.09,0.789)
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Beyond 1-Lipschitz networks
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Do we really need 1 Lipschitz?
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Do we really need 1 Lipschitz?

2 antagonist observations:

• DNNs seem to behave like proximity operators from far, but they are
not 1-Lipschitz.

• Imposing 1-Lipschitz constraints solves the unstability issue, but
lowers performance.
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Do we really need 1 Lipschitz?

Idea: Imaging priors should have some invariance properties with respect
to certain groups of transformations, such as rotations, translations, and
reflections. We denote these transformations associated with a group G,
{Tg}g∈G where Tg ∈ Rn×n is a unitary matrix.
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Do we really need 1 Lipschitz?

Idea: Imaging priors should have some invariance properties with respect
to certain groups of transformations, such as rotations, translations, and
reflections. We denote these transformations associated with a group G,
{Tg}g∈G where Tg ∈ Rn×n is a unitary matrix.

Definition

We say that J is equivariant to the group action {Tg}g∈G if
J(Tgx) = TgJ(x) for all x and g ∈ G.
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Do we really need 1 Lipschitz?

Any operator J can be made G-equivariant through this averaging
procedure:

JG(x)
def
=

1

|G|
∑
g∈G

T−1
g J(Tgx). (1)
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Do we really need 1 Lipschitz?

Any operator J can be made G-equivariant through this averaging
procedure:

JG(x)
def
=

1

|G|
∑
g∈G

T−1
g J(Tgx). (1)

Why can it help?

Proposition

Assume that J is a linear denoiser with singular value decomposition
J =

∑n
i=1 λiuiv

⊤
i and λ1 > λ2 ≥ · · · ≥ λn ≥ 0. If the principal

component u1v
⊤
1 is not G-equivariant, then the averaged denoiser JG has

a strictly smaller Lipschitz constant than J .
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Do we really need 1 Lipschitz?

Any operator J can be made G-equivariant through this averaging
procedure:

JG(x)
def
=

1

|G|
∑
g∈G

T−1
g J(Tgx). (1)

Why can it help?

Proposition

Assume that J is a linear denoiser with singular value decomposition
J =

∑n
i=1 λiuiv

⊤
i and λ1 > λ2 ≥ · · · ≥ λn ≥ 0. If the principal

component u1v
⊤
1 is not G-equivariant, then the averaged denoiser JG has

a strictly smaller Lipschitz constant than J .

Take home meassage 3:
Equivariance can reduce the Lipschitz constant!
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Results

Equivariant PnP:

Sample gk ∼ G
Set J̃G,k(x) = T−1

gk
J(Tgkx)

xk+1 = J̃G,k
(
xk − γA⊤(Axk − y)

)
.

(eq. PnP-PGD)
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Results

Equivariant PnP:

Sample gk ∼ G
Set J̃G,k(x) = T−1

gk
J(Tgkx)

xk+1 = J̃G,k
(
xk − γA⊤(Axk − y)

)
.

(eq. PnP-PGD)

PnP REDULA

Backprojection EquivariantStandard Observed EquivariantStandardObserved EquivariantStandard

https://arxiv.org/abs/2312.01831
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Conclusion
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Conclusion (i)

We have shown:

• 1-Lipschitz denoisers yield convergent PnP algorithms;

• Equivariance can lower the Lipschitz constant of denoisers.
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Conclusion (i)

We have shown:

• 1-Lipschitz denoisers yield convergent PnP algorithms;

• Equivariance can lower the Lipschitz constant of denoisers.

But more than this:

• We aim at solving problems of the form y = Ax+ e;

• Minimization problems of the form argmin
x

f(x) + g(x) are replaced

with PnP

• Applied for 2D, 3D, 3D+time imaging problems...
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Conclusion (i)

We have shown:

• 1-Lipschitz denoisers yield convergent PnP algorithms;

• Equivariance can lower the Lipschitz constant of denoisers.

But more than this:

• We aim at solving problems of the form y = Ax+ e;

• Minimization problems of the form argmin
x

f(x) + g(x) are replaced

with PnP

• Applied for 2D, 3D, 3D+time imaging problems...

but how about other problems?
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Conclusion (ii)

All this is implemented in our brand new library
https://deepinv.github.io/deepinv/!
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Conclusion (ii)

All this is implemented in our brand new library
https://deepinv.github.io/deepinv/!

Thank you!
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