M2 internships funded by the DataIA Institute in 2026
The Institute supports research in data science — including computer science, mathematics, and the humanities and social sciences — through an annual call for applications dedicated to Master's 2 internships (or equivalent).
Closed on November 17, 2025, the call for applications resulted in the selection of 20 internship topics for a total of x months of funding. Partner institutions of the DataIA Institute will receive funds to host an intern for 4 to 6 months.
List of funded internships
[8] SERIES – Inference of spatio-temporal stochastic recurrence models for extreme oceanographic data.
[9] MOBiGUARD – Évaluation et protection de la confidentialité des modèles génératifs de trajectoires de mobilité.
[13] Geometric deep learning for charged particle tracking at the HL-LHC.
[23] PLUGAVC – Tomographie d’impédance électrique Plug-and-Play intégrant un a priori structurel appris par IA à partir de l’imagerie.
[24] ProBEN – PROmpt-based Biomedical Entity Normalization.
[25] Extension de la librairie open-source Interpreto à la modalité visuelle pour l’explicabilité des modèles de vision.
[30] Learning HJB Solutions for Continuous Time Control.
[32] Bridging Reinforcement Learning and Fluid-Flow Modelling for the Control of Complex Shear Flows.
[33] EMOUV’IA – Évaluation des Émotions et du MOUVement dans l’Interaction Augmentée homme–fauteuil.
[34] GRADUATION – proGressive RelAtional Data aUgmentation.
[41] Évaluation des impacts environnementaux et sociaux de la production de corpus d’entraînement pour l’apprentissage machine.
[45] Robust AI for Deep-Integrated Analysis of Neoplasms and Tissues – BRCA Subtyping.
[46] The Euler Characteristic Curve in Topological Data Analysis for Two-Sample Tests and Multiple Change-point Detection.
[38] FACT-Web (Fact-checking via Automatic Creation of Triplets from the Web) – Vérification des faits via la création automatique de triplets à partir du Web.
[52] TOMO-CAO – Reconstruction d’image 3D en tomographie par rayons X par approche basée données intégrant un modèle de CAO.
[5] Bayesian inference on Reads with Efficient Allocation of Data for metagenomic Exploration.
[14] Neural Architecture Growth for Frugal Learning.
[50] CARINDO – Apprentissage par réseaux de neurones à valeurs complexes pour la résolution de problèmes inverses en diffraction.
[43] DeBraBone – A data-driven analysis of healthy bone and bone from patients suffering from a degenerative brain disease.
[53] TRANSFER – Learning models able to handle missing data for the survival analysis of rare cancers from multi-omics data.